PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
基本信息
- 批准号:10381898
- 负责人:
- 金额:$ 103.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAmericanAreaAtrial FibrillationAutomobile DrivingCaliforniaCardiologyCaringCessation of lifeClinicalComplexConfidential InformationConsumptionCoronary ArteriosclerosisData ElementDevelopmentDiagnosisDiseaseDisease ManagementDissemination and ImplementationEFRACElectronic Health RecordEnvironmentEvidence based interventionExpert SystemsGuidelinesHealth PersonnelHealth systemHeart failureHomeHospitalizationHospitalsHypertensionIncidenceIndividualIntelligenceJudgmentLeftLiquid substanceLogicMedicalMethodist ChurchMonitorPatientsPharmacologyPopulationProcessProtocols documentationRandomizedRecommendationRecordsSamplingSan FranciscoServicesSiteSoftware ValidationStandardizationSyndromeTestingTimeTreatment EfficacyUniversitiesVisualizationVotingWorkadjudicatecare coordinationclinical careclinical research sitecohortcollegecommunity cliniccomorbiditycostdata cleaningdigitalexperiencehealth datahospitalization rateshypertension controlimprovedimproved outcomeinteroperabilitymeetingsmortalitypersonalized carepost-COVID-19preservationregression algorithmresponsesystem architecturetreatment optimizationvolume hypertension
项目摘要
Need. In the US, heart failure (HF) is the contributing cause of 1 in 8 deaths. HF with preserved ejection
fraction (HFpEF) affects close to 50% of all HF patients. The 5-years mortality is 35%. HFpEF multi-organ
syndrome clinical care management is complex and time consuming. In addressing HFpEF, the American
College of Cardiology guidelines directed medical therapy (GDMT) references the medical therapy decision to
the individual disease guidelines [hypertension (HTN), coronary artery disease (CAD), atrial fibrillation (AFib)].
Providing concerted multi-disease HFpEF management is a major unmet clinical need.
Solution. In response to this need, we (OPTIMA) developed and demonstrated the feasibility of a clinical
analytic intelligence (AI) for the management of HFpEF multi-organ syndrome, optima4PEF AI. The solution
adds significant value to OPTIMA’s HF Management Service currently addressing the GDMT management of
HTN (optima4BP AI) and HFrEF (optima4heart AI). optima4PEF deconstructs a complex set of disease-
specific clinical guidelines and re-assembles them into a concerted multi-disease GDMT that is patient-
personalized, explainable, and actionable.
Objectives. PERSEVERE-PEF [optimizing medical therapy saves lives in heart failure with preserved ejection
fraction] proposes to complete the AI development of optima4PEF product concept, and to validate its efficacy
using contemporary, diverse, retrospective patient cohorts.
Aim 1. Build optima4PEF AI to address the GDMT management of HFpEF multi-organ syndrome.
Hypothesis. optima4PEF deconstructs a complex set of disease-specific clinical guidelines and re-assembles
them into a concerted multi-disease GDMT that is patient-personalized, explainable, and actionable.
The product concept work built the optima4PEF AI system architecture and developed the decision logic to
address GDMT management for patients experiencing HFpEF + volume overload + HTN. optima4PEF product
concept will be extended to include GDMT management of AFib and of CAD. An end-to-end algorithm
regression test will be performed to verify that each decision logic step performs its intended function.
Aim 2. Validate optima4PEF AI in recommending the most relevant GDMT. Hypothesis. In ≥ 90% of
patient cases, optima4PEF case-specific treatment recommendation is ACCEPTED as the appropriate next
step in the process of multi-disease GDMT treatment optimization of patients diagnosed with HFpEF.
Unidentified patient records will be collected from 4 clinical partner sites. A randomization algorithm will select
n=840 patient records. optima4PEF will generate a Treatment Action (TA) for each patient record. A simple
majority rule of pharmacology and cardiology experts (n=5) will adjudicate the optima4PEF TA.
optima4PEF averts loss of lives by assisting in the delivery of HFpEF multi-disease management.
optima4PEF surveillance & personalized care support the emerging digital-first clinical care practices.
需要。在美国,心力衰竭(HF)是导致八分之一死亡的原因。保留射血功能的HF
分数(HFpEF)影响近50%的心衰患者。5年死亡率为35%。HFpEF多脏器
证候临床护理管理复杂、耗时长。在向HFpEF发表讲话时,美国人
心脏病学会指导医疗指南(GDMT)将医疗决定引用到
个体化疾病指南[高血压(HTN)、冠心病(CAD)、房颤(AFib)]。
提供协调一致的多病种HFpEF治疗是一个尚未满足的主要临床需求。
解决办法。为了响应这一需求,我们(Optima)开发并展示了临床应用的可行性。
分析智能(AI)用于HFpEF多器官综合征的治疗,optima4PEF AI。解决方案
为Optima的高频管理服务增加了重大价值,目前正在解决GDMT管理的问题
HTN(Optima4BP AI)和HFrEF(optima4心AI)。Optima4PEF解构了一组复杂的疾病-
具体的临床指南,并将它们重新组装成一个协调一致的多疾病GDMT,这是患者-
个性化、可解释和可操作。
目标。Perevere-PEF[优化药物治疗以保存射血挽救心力衰竭患者的生命
FRAME]建议完成optima4PEF产品概念的人工智能开发,并验证其有效性
使用当代的、多样化的、有追溯性的患者队列。
目的1.建立optima4PEF人工智能,以解决GDMT对HFpEF多器官综合征的处理。
假设。Optima4PEF解构了一套复杂的针对疾病的临床指南,并重新组装
将它们整合成患者个性化、可解释和可操作的协调一致的多疾病GDMT。
产品概念工作构建了optima4PEF AI系统架构,并开发了决策逻辑以
为经历HFpEF+容量过载+HTN的患者提供GDMT管理。Optima4PEF产品
概念将扩展到包括AFib和CAD的GDMT管理。一种端到端的算法
将执行回归测试,以验证每个决策逻辑步骤是否执行其预期功能。
目的2.验证optima4PEF AI在推荐最相关的GDMT中的有效性。假设。在≥中,90%的
患者病例,optima4PEF针对具体病例的治疗建议被接受为合适的下一步
在多疾病GDMT治疗过程中优化诊断为HFpEF的患者。
不明身份的患者记录将从4个临床合作伙伴网站收集。随机化算法将选择
N=840份病历。Optima4PEF将为每个患者记录生成一个治疗操作(TA)。一个简单的
药理学和心脏病学专家(n=5)的多数规则将对optima4PEF TA进行裁决。
Optima4PEF通过协助提供HFpEF多疾病管理来避免生命损失。
Optima4PEF监控和个性化护理支持新兴的数字优先临床护理实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Voskerician其他文献
Gabriela Voskerician的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Voskerician', 18)}}的其他基金
PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
- 批准号:
10641684 - 财政年份:2022
- 资助金额:
$ 103.49万 - 项目类别:
ARTERY Outcomes: tAilored dRug Titration through artificial intElligence: an inteRventional studY
动脉结果:通过人工智能定制药物滴定:一项干预性研究
- 批准号:
10001603 - 财政年份:2019
- 资助金额:
$ 103.49万 - 项目类别:
optima4heart: pharmacological intervention and transition of care in cardiovascular disease management
optima4heart:心血管疾病管理中的药物干预和护理转变
- 批准号:
9770702 - 财政年份:2019
- 资助金额:
$ 103.49万 - 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
- 批准号:
10159301 - 财政年份:2018
- 资助金额:
$ 103.49万 - 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
- 批准号:
9901106 - 财政年份:2018
- 资助金额:
$ 103.49万 - 项目类别:
Tailored Drug Titration through Artificial Intelligence
通过人工智能定制药物滴定
- 批准号:
9341533 - 财政年份:2017
- 资助金额:
$ 103.49万 - 项目类别:
Personal Mobile Diabetes Management System(PMDMS): IN-TRACK
个人移动糖尿病管理系统(PMDMS):IN-TRACK
- 批准号:
8311248 - 财政年份:2012
- 资助金额:
$ 103.49万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 103.49万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 103.49万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 103.49万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 103.49万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 103.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 103.49万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 103.49万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




