PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
基本信息
- 批准号:10159301
- 负责人:
- 金额:$ 71.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse drug eventAdverse eventAntihypertensive AgentsArtificial IntelligenceBlood PressureCaliforniaCessation of lifeClinicalClinical TrialsConfidential InformationDataDevelopmentDiabetes MellitusDiagnosisDrug CombinationsEnrollmentEuclidean SpaceExclusionFoundationsGenderGenerationsGoalsGuidelinesHealthHeart failureHypertensionIncidenceIndividualInterventionIntervention TrialLearningLifeLipidsLogicMedical centerMindModelingModificationMyocardial InfarctionNamesNatureNursesOutcomePatientsPerformancePharmaceutical PreparationsPharmacistsPharmacological TreatmentPharmacotherapyPhasePhysiciansPreparationProcessProtocols documentationResourcesRouteSafetySan FranciscoSeminalSourceStandardizationStrokeTestingTimeTrainingUniversitiesVisitWomen&aposs HealthWomen&aposs RoleWorkbaseblood pressure interventioncardiovascular risk factorclinical careclinically relevantcommercial applicationcomparative efficacydata miningdata qualityhypertension treatmentinnovationoptimal treatmentspatient populationpreventprocessing speedresponsestroke incidencestroke risksuccess
项目摘要
Need. In the US, 40 million patients with hypertension (HTN) have their blood pressure (BP) uncontrolled.
BP above clinical Target even for a few months increases the risk for stroke (35-40%), heart failure (HF) (up to
64%), myocardial infarction (MI) (15-25%). Physician-nurse-pharmacist resource-intensive demonstrations in
achieving & maintaining BP Target have shown promising results, but their real-life deployment was found
unsustainable long-term. As a result, a process-standardized and sustainable solution is acutely needed.
Solution. In response to this need, Optima Integrated Health developed optima4BP 1.0. It is a first-in-class
artificial intelligence (AI) that simulates the process of clinical reasoning undertaken by the treating physician in
optimizing the anti-HTN treatment towards BP Target. Just like the physician, optima4BP 1.0 cannot determine
upfront the needed Optimal Treatment (OT) to achieve & maintain BP Target for 1-2 years. PROTECT
[optima4BP 2.0: prediction of Optimal Treatment and route to achieve and maintain BP Target] proposes to
establish upfront the personalized OT. The OT can then be used to select the shortest and safest treatment
modification route needed to achieve & maintain BP Target. Phase II Goal. Build optima4BP 2.0.
Phase I. Phase I Prior Work demonstrated that k-Nearest Neighbor (kNN), an AI model, can predict with ≥
80% confidence the correct anti-HTN treatment, when compared to physician decision.
Phase II. optima4BP 2.0 will predict the Optimal Treatment and route to achieve & maintain BP Target.
Optimal Treatment data-mining source. PROTECT will use the SPRINT (Systolic Blood Pressure
Intervention Trial, 2015) and ACCORD (Action to Control Cardiovascular Risk in Diabetes, 2010) clinical trial
data. They represent the foundation of the most current anti-HTN treatment management national guidelines.
Aim 1. Build kNN. Hypothesis. kNN can predict the proximity (clinical relevance) of a patient to an Optimal
Treatment (OT). Milestone. Achieve ≥ 90% accuracy of prediction to physician decision. Phase I Data
Preparation protocol will be applied to the SPRINT & ACCORD data. Then, the kNN Ensemble Learning
function will be built to select the Optimal Treatment with the highest demonstrated efficacy by comparing the
choice from 3 computational approaches developed and tested during Phase I.
Aim 2. Build the Optimal Treatment Route (OTR). Hypothesis. Knowing the Current and Optimal
Treatment (OT), an OTR can be built. Milestone. Safest Route: Achieve 100% exclusion of treatments that led
to an adverse event in similar patient populations. Shortest Route: Achieve ≥30% reduction in number of
treatment changes compared to physician route. The OTR will be built by comparing at each Step on the
Route how similar each Candidate Treatment is to the OT through a computed similarity assessment.
optima4BP 2.0 aims to establish a process-standardized & sustainable solution with the goal of
reducing the incidence of stroke, HF, MI and death resulting from uncontrolled hypertension.
需要。在美国,4000万高血压(HTN)患者的血压(BP)不受控制。
即使血压高于临床目标数月,也会增加中风(35%-40%)、心力衰竭(HF)(高达
%)、心肌梗死(MI)(15-25%)。医生-护士-药剂师资源密集型演示
实现和维护BP目标已经显示出有希望的结果,但他们的实际部署被找到了
不可持续的长期。因此,迫切需要一个流程标准化和可持续的解决方案。
解决办法。为了满足这一需求,Optima集成健康中心开发了optima4BP 1.0。这是一辆一流的
人工智能(AI),模拟治疗医生在临床上进行推理的过程
针对BP靶点优化抗HTN治疗就像医生一样,optima4BP 1.0不能确定
提前完成并维持BP目标1-2年所需的最佳治疗(OT)。护卫
[optima4BP 2.0:实现和维持BP目标的最佳治疗和路线的预测]建议
预先建立个性化的加班费。然后,可以使用OT来选择最短和最安全的治疗
完成和维护BP目标所需的修改路线。第二阶段目标。构建optima4BP 2.0。
第一阶段第一阶段前期工作表明,人工智能模型k近邻可以使用≥进行预测
与医生的决定相比,80%的信心是正确的抗HTN治疗。
第二阶段。Optima4BP 2.0将预测实现和维持BP目标的最佳治疗和路线。
优化处理数据--挖掘源。保护将使用SPRINT(收缩血压
干预试验,2015)和ACCORD(控制糖尿病心血管风险行动,2010)临床试验
数据。它们代表了最当前的抗HTN治疗管理国家指南的基础。
目标1.构建KNN。假设。KNN可以预测患者是否接近最佳状态(临床相关性
治疗(OT)。这是一个里程碑。使≥对医生决策的预测准确率达到90%。第一阶段数据
准备协议将应用于Sprint&Acord数据。然后,KNN合奏学习
将构建函数以选择具有最高证明疗效的最佳治疗方案
在第一阶段开发和测试的3种计算方法中进行选择
目的2.建立最佳治疗路径(OTR)。假设。了解当前和最优
治疗(OT),可以建立OTR。这是一个里程碑。最安全的途径:实现100%排除导致
在相似的患者群体中发生不良事件。最短路径:实现≥数量减少30%
与内科医生路线相比,治疗方法有所变化。将通过在每个步骤中比较
通过计算的相似性评估确定每个候选治疗方案与OT的相似度。
Optima4BP 2.0旨在建立流程标准化和可持续的解决方案,目标是
减少中风、心力衰竭、心肌梗死和因高血压失控而导致的死亡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Voskerician其他文献
Gabriela Voskerician的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Voskerician', 18)}}的其他基金
PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
- 批准号:
10641684 - 财政年份:2022
- 资助金额:
$ 71.6万 - 项目类别:
PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
- 批准号:
10381898 - 财政年份:2022
- 资助金额:
$ 71.6万 - 项目类别:
ARTERY Outcomes: tAilored dRug Titration through artificial intElligence: an inteRventional studY
动脉结果:通过人工智能定制药物滴定:一项干预性研究
- 批准号:
10001603 - 财政年份:2019
- 资助金额:
$ 71.6万 - 项目类别:
optima4heart: pharmacological intervention and transition of care in cardiovascular disease management
optima4heart:心血管疾病管理中的药物干预和护理转变
- 批准号:
9770702 - 财政年份:2019
- 资助金额:
$ 71.6万 - 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
- 批准号:
9901106 - 财政年份:2018
- 资助金额:
$ 71.6万 - 项目类别:
Tailored Drug Titration through Artificial Intelligence
通过人工智能定制药物滴定
- 批准号:
9341533 - 财政年份:2017
- 资助金额:
$ 71.6万 - 项目类别:
Personal Mobile Diabetes Management System(PMDMS): IN-TRACK
个人移动糖尿病管理系统(PMDMS):IN-TRACK
- 批准号:
8311248 - 财政年份:2012
- 资助金额:
$ 71.6万 - 项目类别:
相似海外基金
Artificial intelligence-based health IT tools to optimize critical care pharmacist resources through adverse drug event prediction
基于人工智能的健康 IT 工具,通过药物不良事件预测来优化重症监护药剂师资源
- 批准号:
10503268 - 财政年份:2022
- 资助金额:
$ 71.6万 - 项目类别:
Comparison of Hemorrhagic Risk between Prasugrel and Clopidogrel: a Retrospective Study using Adverse Drug Event Reporting Databases
普拉格雷和氯吡格雷出血风险的比较:使用药物不良事件报告数据库的回顾性研究
- 批准号:
18K14954 - 财政年份:2018
- 资助金额:
$ 71.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Adverse Reactions to Potent Opioids: An analysis using the largescale Japanese Adverse Drug Event Report database
对强效阿片类药物的不良反应:使用大型日本药物不良事件报告数据库进行的分析
- 批准号:
15K08111 - 财政年份:2015
- 资助金额:
$ 71.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementation and Evaluation of an Enhanced PharmaNet-Based Adverse Drug Event Reporting Platform to Improve Patient Safety and Meet Adverse Drug Reaction Reporting Requirements
基于 PharmaNet 的增强型药品不良事件报告平台的实施和评估,以提高患者安全并满足药品不良反应报告要求
- 批准号:
334597 - 财政年份:2015
- 资助金额:
$ 71.6万 - 项目类别:
Operating Grants
EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
- 批准号:
9123554 - 财政年份:2014
- 资助金额:
$ 71.6万 - 项目类别:
EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
- 批准号:
8772667 - 财政年份:2014
- 资助金额:
$ 71.6万 - 项目类别:
Integration of spatial epidemiology and pharmacoepidemiology for the practical use of the adverse drug event report database with related applications
空间流行病学和药物流行病学的整合,用于药物不良事件报告数据库的实际使用及相关应用
- 批准号:
26540012 - 财政年份:2014
- 资助金额:
$ 71.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Epidemiology of Adverse Drug Event in intensive care unit (ICU) and neonatal ICU (NICU)
重症监护病房(ICU)和新生儿重症监护病房(NICU)药品不良事件流行病学
- 批准号:
25860484 - 财政年份:2013
- 资助金额:
$ 71.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optimizing Adverse Drug Event Reporting within a Provincial Medication Information System to Improve Pharmacovigilence and Inform Pharmaceutical Policy
优化省级药品信息系统内的药品不良事件报告,以提高药物警戒并为药品政策提供信息
- 批准号:
284162 - 财政年份:2013
- 资助金额:
$ 71.6万 - 项目类别:
Fellowship Programs
Adverse Drug Event Reporting in PharmaNet to Improve Patient Safety and Inform Policy
PharmaNet 中的药物不良事件报告可提高患者安全并为政策提供信息
- 批准号:
273419 - 财政年份:2012
- 资助金额:
$ 71.6万 - 项目类别:
Operating Grants














{{item.name}}会员




