ARTERY Outcomes: tAilored dRug Titration through artificial intElligence: an inteRventional studY
动脉结果:通过人工智能定制药物滴定:一项干预性研究
基本信息
- 批准号:10001603
- 负责人:
- 金额:$ 65.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAgeAlgorithmsArtificial IntelligenceBlood PressureCaringClinicalClinical TrialsConfidential InformationDataData AnalysesDiagnosisEffectivenessElectronic Health RecordEmergency department visitEnsureEpidemicEthnic OriginGenderGenerationsGoalsHealthHeart failureHospital CostsHospitalizationHybridsHypersensitivityHypertensionInformation SystemsIntervention StudiesLearningLife StyleMaintenanceMeasuresMedical centerMindModelingModificationMyocardial InfarctionNatureOutcomePatientsPharmaceutical PreparationsPharmacological TreatmentPhasePhysiciansPositioning AttributeProceduresProcessRandomizedRandomized Clinical TrialsRecommendationReportingSafetySan FranciscoSecureService delivery modelStrokeSystemTimeTitrationsTreatment Efficacyadverse event riskarmbaseblood pressure reductionblood pressure regulationcardiovascular risk factorcare coordinationcommercial applicationcomorbiditycostdata acquisitiondata warehousefollow-uphealth care deliveryhypertension controlhypertension treatmentimprovedinnovationinteroperabilitymedication complianceprimary endpointprimary outcomerandomized trialresponsesecondary outcomeside effectstandard of carestroke incidencetreatment armtreatment choicetreatment optimizationweb services
项目摘要
Need: Nearly half (34 million) of all hypertension (HTN) patients have their blood pressure (BP)
uncontrolled. Despite medication and life-style management, the cost of HTN-associated hospitalizations is
$113 billion, or 15% of all hospital costs. HTN is the leading cause for stroke, heart failure (HF) and myocardial
infarction (MI) hospitalizations. Clinical trials have shown that active pharmacological treatment management
of HTN to BP goal reduces the incidence of stroke by 35-40%, MI by 15-25%, and HF by up to 64%.
Solution: In response to the national “epidemic” of uncontrolled HTN, Optima Integrated Health has
developed optima4BP. optima4BP is an artificial intelligence (AI) that transforms the episodic and reactive
nature of uncontrolled BP pharmacological treatment management into a process that is continuous, proactive,
and personalized. The innovation was developed with the physician in mind by simulating the in-office clinical
reasoning treatment decision process. optima4BP is a physician decision support aid that safely and when
needed optimizes the pharmacological treatment for HTN. optima4BP is interoperable in real-time with the
EpicÒ Electronic Health Record (EHR), constantly evaluating the efficacy of patients’ current treatment and the
requirement for optimization. When a treatment optimization is needed, optima4BP communicates directly with
the treating physician by providing a recommendation in the EHR In-Basket that can be accepted or declined.
Goal of Direct to Phase II: ARTERY Outcomes [tailored drug titration through artificial intelligence: an
interventional study] is a 12 months follow-up, randomized clinical trial (n=300) that: Evaluates optima4BP’s
safety and efficacy in improving HTN control [Aim 1], and Ensures Data Systems Maintenance [Aim 2].
Aim 1. Evaluate optima4BP’s safety and efficacy in improving HTN control. We propose to conduct a
randomized clinical trial (ARTERY Outcomes) at UC San Francisco Medical Center (UCSF MC). We will
investigate the safety and efficacy of optima4BP in improving BP control compared to standard of care (SoC).
The primary end-point will examine the reduction in systolic BP (SBP) between in-office start and end of
study. Milestone: optima4BP reduces SBP by >6 mmHg than SoC. The safety of using optima4BP will
be investigated as a secondary outcome in the context of reported adverse events (AEs).
Aim 2. Ensure data systems maintenance (DSM). DSM is a critical activity that includes optimization,
error correction, deletion of discarded features and enhancement of existing features. UCSF MC and Optima
IT teams will address (1) Data Acquisition upgrades and patches of any system/component within the data
flow; and (2) Surveillance management that addresses systems errors, and performs audits/upgrades on the
data repository [data warehouse]. Milestone: Ensure the validity of the collected-processed-analyzed data.
Commercial Application: With a growing need for value-based care, optima4BP is strongly positioned to
support this specific care coordination model.
需求:近一半(3400万)的高血压(HTN)患者有血压
不受控制。尽管有药物治疗和生活方式管理,与HTN相关的住院费用是
1130亿美元,占所有医院费用的15%。HTN是导致中风、心力衰竭(HF)和心肌梗塞的主要原因
心肌梗死(MI)住院。临床试验表明,积极的药物治疗管理
HTN转BP的目标使卒中发生率降低35-40%,MI降低15-25%,心力衰竭降低高达%。
解决方案:为应对全国范围内失控的HTN疫情,Optima集成健康已
开发了optima4BP。Optima4BP是一种人工智能(AI),它将情节和反应性
将不受控制的BP药物治疗管理转变为一个持续的、主动的、
而且很个性化。这项创新是在考虑到医生的情况下通过模拟办公室临床进行开发的
推理治疗决策过程。Optima4BP是一款医生决策支持辅助工具,可在
Need优化了HTN的药物治疗。Optima4BP可与
EPIC电子健康记录(EHR),不断评估患者当前治疗的疗效和
对优化的要求。当需要优化治疗时,optima4BP可直接与
治疗医生通过在电子病历收件篮中提供可以接受或拒绝的建议。
直接到第二阶段的目标:动脉结果[通过人工智能进行定制药物滴定:一种
介入研究]是一项12个月的随机化临床试验(n=300):评估optima4BP
改进HTN控制的安全性和有效性[目标1],并确保数据系统维护[目标2]。
目的1.评价optima4BP改善HTN控制的安全性和有效性。我们建议进行一项
在加州大学旧金山分校医学中心(UCSF MC)进行的随机临床试验(动脉结果)。我们会
与标准护理(SOC)相比,研究optima4BP在改善血压控制方面的安全性和有效性。
主要终点将检查在办公室开始和结束之间收缩压(SBP)的降低
学习。里程碑:optima4BP比SoC降低SBP>;6毫米汞柱。使用optima4BP的安全性将
在已报告的不良事件(AEs)的背景下,作为次要结果进行调查。
目标2.确保数据系统维护(DSM)。需求侧管理是一项关键活动,包括优化、
纠错、删除被丢弃的特征和增强现有特征。加州大学旧金山分校MC和OPTIMA
IT团队将处理(1)数据采集升级和数据中任何系统/组件的补丁
流;以及(2)监控管理,用于解决系统错误,并对
数据仓库[数据仓库]。里程碑:确保收集、处理和分析的数据的有效性。
商业应用:随着对基于价值的护理的需求不断增长,optima4BP具有强大的优势
支持这一特定的护理协调模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Voskerician其他文献
Gabriela Voskerician的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Voskerician', 18)}}的其他基金
PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
- 批准号:
10641684 - 财政年份:2022
- 资助金额:
$ 65.48万 - 项目类别:
PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
- 批准号:
10381898 - 财政年份:2022
- 资助金额:
$ 65.48万 - 项目类别:
optima4heart: pharmacological intervention and transition of care in cardiovascular disease management
optima4heart:心血管疾病管理中的药物干预和护理转变
- 批准号:
9770702 - 财政年份:2019
- 资助金额:
$ 65.48万 - 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
- 批准号:
10159301 - 财政年份:2018
- 资助金额:
$ 65.48万 - 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
- 批准号:
9901106 - 财政年份:2018
- 资助金额:
$ 65.48万 - 项目类别:
Tailored Drug Titration through Artificial Intelligence
通过人工智能定制药物滴定
- 批准号:
9341533 - 财政年份:2017
- 资助金额:
$ 65.48万 - 项目类别:
Personal Mobile Diabetes Management System(PMDMS): IN-TRACK
个人移动糖尿病管理系统(PMDMS):IN-TRACK
- 批准号:
8311248 - 财政年份:2012
- 资助金额:
$ 65.48万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 65.48万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 65.48万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 65.48万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 65.48万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 65.48万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 65.48万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 65.48万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 65.48万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 65.48万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 65.48万 - 项目类别:














{{item.name}}会员




