Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
基本信息
- 批准号:10473794
- 负责人:
- 金额:$ 26.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:BehaviorBindingBinding ProteinsBinding SitesBiochemicalBiochemical ProcessBiophysical ProcessBrainCell membraneCellular MembraneChargeChemicalsCholesterolCommunitiesComplexCouplingDataDefectDevelopmentDiseaseElectrophysiology (science)EnvironmentEnzymesFluorescenceGoalsHealthHumanHydrophobicityImageIon ChannelIonsKnowledgeLigandsLipidsLiquid substanceMeasurementMeasuresMediatingMembraneMental disordersMicroscopyMissionModelingMolecular ConformationMutationNatureNerve DegenerationNeuronsNeurosciencesPathologicPathway interactionsPharmaceutical PreparationsPhosphatidylinositolsPhysical environmentPlayPost-Translational Protein ProcessingProcessPropertyProteinsRegulationRegulatory PathwayResearchResolutionRestRoleSiteSorting - Cell MovementStructureSynapsesSynaptic plasticityTechniquesTestingTheoretical modelThermodynamicsTyrosine PhosphorylationUnited States National Institutes of HealthWorkaddictioneffective therapyexperienceexperimental studygenetic regulatory proteininnovationinsightmembrane modelmolecular scalenervous system disorderneurosteroidsnovelnovel strategiesnovel therapeutic interventionpalmitoylationpredictive modelingpreventrelating to nervous systemsimulationsmall moleculestemsynaptic functiontheoriestreatment strategyvoltage
项目摘要
Ion channels are membrane bound proteins that mediate fast neural dynamics by selectively controlling the
flow of charged ions across membranes. Most channels are embedded within compositionally complex
neuronal membranes, whose detailed composition play important roles in regulating channel functions.
Membranes can regulate channels directly, through the binding of specific components to sites within channel
structures, or indirectly, by impacting the biophysical and biochemical processes evolved to regulate channel
functions in their native environment. A mechanistic understanding of how membrane composition impacts
channel functions is vital because changes in neuronal membrane composition are associated with normal
development and neurological disease. The goal of the proposed studies is to test three distinct mechanisms
through which compositionally complex membranes regulate channel function. The working hypothesis,
supported by past collaborative work of the Pl and Col, is that some channel functions are regulated by
emergent properties of their embedding membranes that occur because these membranes are heterogeneous.
Guided by extensive preliminary data, three specific aims will be pursued: 1) Measure the functional coupling
of channel states to membrane domains, 2) Establish how membrane domains impact the binding of allosteric
regulators, and 3) Identify the roles of membrane domains within the broader regulatory environment of
neurons. The first aim experimentally tests a minimal model positing that single channel functions are
allosterically regulated by domains within embedding membranes through tuning the availability of preferred
local lipid environments. The second aim explores how the chemical potential of known allosteric regulators
such as cholesterol and phosphoinositide lipids are impacted by the same thermodynamic parameters that
control properties of membrane domains. The third aim investigates how membrane domains impact the
sorting of enzymes that participate in protein palmitoylation and tyrosine phosphorylation regulatory pathways
occurring at neuronal synapses. Experimental approaches draw on the PIs expertise using quantitative super-resolution
fluorescence localization microscopy techniques and are combined with functional studies, theory,
and simulation to test and refine mechanistic models of isolated and collective channel functions. The
proposed work is innovative because it applies predictive models of membrane organization that are novel to
both the channel and membrane domain communities. A broadly applicable framework for describing how
domains modulate channel functions will drive advances in neuroscience by providing new insights into the
functional basis for membrane changes with development and neurological disease, will motivate more
effective and targeted treatments for neurological disease, and will connect the molecular-scale behaviors of
channels to larger questions in neuroscience through the collective actions of lipids and membrane domains.
离子通道是一种膜结合蛋白,通过选择性地控制
带电离子通过膜的流动。大多数频道都嵌入了复杂的成分中
神经细胞膜,其详细的组成在调节通道功能中起着重要作用。
膜可以通过将特定的成分结合到通道内的位置来直接调节通道
结构,或间接地通过影响生物物理和生化过程来调节通道
在它们的原生环境中发挥作用。膜成分影响的机械论理解
通道功能至关重要,因为神经细胞膜成分的变化与正常
发育和神经疾病。拟议研究的目标是测试三种不同的机制。
组成复杂的膜通过这些膜调节通道功能。工作假说,
由PL和COL过去的协作工作支持的是,一些渠道职能由
由于这些膜是非均相的,它们的嵌入膜的紧急性质。
在广泛的初步数据的指导下,我们将追求三个具体目标:1)测量功能耦合
通道状态对膜结构域的影响,2)确定膜结构域如何影响变构结合
监管机构,以及3)确定膜结构域在更广泛的监管环境中的作用
神经元。第一个目标是通过实验测试一个最小模型,该模型假定单通道函数是
通过调节首选药物的利用度来调节包埋膜内结构域对变构的调节
局部脂质环境。第二个目标是探索已知的变构调节剂的化学势
如胆固醇和肌醇磷脂受相同的热力学参数的影响
控制膜结构域的属性。第三个目标是研究膜结构域如何影响
参与蛋白质棕榈酰化和酪氨酸磷酸化调节通路的酶的分类
发生在神经元突触处。实验方法利用PIS的专业知识,使用定量超分辨率
荧光定位显微镜技术,并与功能研究,理论,
和模拟,以测试和提炼孤立和集体渠道功能的机制模型。这个
所提出的工作具有创新性,因为它将膜组织的预测模型应用于
通道和膜域群落。一个广泛适用的框架,用于描述
调节通道功能的领域将通过提供对
随着发育和神经系统疾病的发生,膜的功能基础发生变化,会激发更多的动力
对神经系统疾病的有效和有针对性的治疗,并将连接分子尺度的行为
通过脂质和膜域的集体作用,引导神经科学中更大的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah L Veatch其他文献
Sarah L Veatch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah L Veatch', 18)}}的其他基金
Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
- 批准号:
10256046 - 财政年份:2019
- 资助金额:
$ 26.08万 - 项目类别:
Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
- 批准号:
10016343 - 财政年份:2019
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
- 批准号:
10183265 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
- 批准号:
9921409 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipids in early B cell receptor signaling SUPPLEMENT
脂质在早期 B 细胞受体信号传导中的功能作用
- 批准号:
9276225 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipids in early B cell receptor signaling.
脂质在早期 B 细胞受体信号传导中的功能作用。
- 批准号:
8668648 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipids in early B cell receptor signaling.
脂质在早期 B 细胞受体信号传导中的功能作用。
- 批准号:
9058146 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
- 批准号:
10393588 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Mechanistic studies of membrane lateral organization in cell plasma membranes.
细胞质膜膜横向组织的机制研究。
- 批准号:
8146018 - 财政年份:2009
- 资助金额:
$ 26.08万 - 项目类别:
Mechanistic studies of membrane lateral organization in cell plasma membranes.
细胞质膜膜横向组织的机制研究。
- 批准号:
8133576 - 财政年份:2009
- 资助金额:
$ 26.08万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 26.08万 - 项目类别:
Discovery Projects
Structural classification of NHEJ pathways; unravelling the role of Ku-binding proteins
NHEJ通路的结构分类;
- 批准号:
MR/X00029X/1 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Research Grant
BRC-BIO: Evolutionary Patterns of Ice-Binding Proteins in North Pacific Intertidal Invertebrates
BRC-BIO:北太平洋潮间带无脊椎动物冰结合蛋白的进化模式
- 批准号:
2312378 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Standard Grant
Exploring the roles and functions of sex steroid hormone receptor-associated RNA binding proteins in the development of geriatric diseases.
探索性类固醇激素受体相关 RNA 结合蛋白在老年疾病发展中的作用和功能。
- 批准号:
23K06408 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
- 批准号:
10680969 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
- 批准号:
10744556 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Structural and computational analysis of immune-related RNA-binding proteins
免疫相关 RNA 结合蛋白的结构和计算分析
- 批准号:
23K06597 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of carbohydrate-binding proteins and their applications
碳水化合物结合蛋白的表征及其应用
- 批准号:
23K05034 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A machine learning approach to identify carbon dioxide-binding proteins for sustainability and health
一种机器学习方法来识别二氧化碳结合蛋白以实现可持续发展和健康
- 批准号:
2838427 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Studentship
RNA-binding proteins in bacterial virulence and host-pathogen interactions
RNA结合蛋白在细菌毒力和宿主-病原体相互作用中的作用
- 批准号:
10659346 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:














{{item.name}}会员




