Ion channel regulation by heterogeneous membranes

异质膜的离子通道调节

基本信息

  • 批准号:
    10473794
  • 负责人:
  • 金额:
    $ 26.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-13 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Ion channels are membrane bound proteins that mediate fast neural dynamics by selectively controlling the flow of charged ions across membranes. Most channels are embedded within compositionally complex neuronal membranes, whose detailed composition play important roles in regulating channel functions. Membranes can regulate channels directly, through the binding of specific components to sites within channel structures, or indirectly, by impacting the biophysical and biochemical processes evolved to regulate channel functions in their native environment. A mechanistic understanding of how membrane composition impacts channel functions is vital because changes in neuronal membrane composition are associated with normal development and neurological disease. The goal of the proposed studies is to test three distinct mechanisms through which compositionally complex membranes regulate channel function. The working hypothesis, supported by past collaborative work of the Pl and Col, is that some channel functions are regulated by emergent properties of their embedding membranes that occur because these membranes are heterogeneous. Guided by extensive preliminary data, three specific aims will be pursued: 1) Measure the functional coupling of channel states to membrane domains, 2) Establish how membrane domains impact the binding of allosteric regulators, and 3) Identify the roles of membrane domains within the broader regulatory environment of neurons. The first aim experimentally tests a minimal model positing that single channel functions are allosterically regulated by domains within embedding membranes through tuning the availability of preferred local lipid environments. The second aim explores how the chemical potential of known allosteric regulators such as cholesterol and phosphoinositide lipids are impacted by the same thermodynamic parameters that control properties of membrane domains. The third aim investigates how membrane domains impact the sorting of enzymes that participate in protein palmitoylation and tyrosine phosphorylation regulatory pathways occurring at neuronal synapses. Experimental approaches draw on the PIs expertise using quantitative super-resolution fluorescence localization microscopy techniques and are combined with functional studies, theory, and simulation to test and refine mechanistic models of isolated and collective channel functions. The proposed work is innovative because it applies predictive models of membrane organization that are novel to both the channel and membrane domain communities. A broadly applicable framework for describing how domains modulate channel functions will drive advances in neuroscience by providing new insights into the functional basis for membrane changes with development and neurological disease, will motivate more effective and targeted treatments for neurological disease, and will connect the molecular-scale behaviors of channels to larger questions in neuroscience through the collective actions of lipids and membrane domains.
Ion channels are membrane bound proteins that mediate fast neural dynamics by selectively controlling the flow of charged ions across membranes. Most channels are embedded within compositionally complex neuronal membranes, whose detailed composition play important roles in regulating channel functions. Membranes can regulate channels directly, through the binding of specific components to sites within channel structures, or indirectly, by impacting the biophysical and biochemical processes evolved to regulate channel functions in their native environment. A mechanistic understanding of how membrane composition impacts channel functions is vital because changes in neuronal membrane composition are associated with normal development and neurological disease. The goal of the proposed studies is to test three distinct mechanisms through which compositionally complex membranes regulate channel function. The working hypothesis, supported by past collaborative work of the Pl and Col, is that some channel functions are regulated by emergent properties of their embedding membranes that occur because these membranes are heterogeneous. Guided by extensive preliminary data, three specific aims will be pursued: 1) Measure the functional coupling of channel states to membrane domains, 2) Establish how membrane domains impact the binding of allosteric regulators, and 3) Identify the roles of membrane domains within the broader regulatory environment of neurons. The first aim experimentally tests a minimal model positing that single channel functions are allosterically regulated by domains within embedding membranes through tuning the availability of preferred local lipid environments. The second aim explores how the chemical potential of known allosteric regulators such as cholesterol and phosphoinositide lipids are impacted by the same thermodynamic parameters that control properties of membrane domains. The third aim investigates how membrane domains impact the sorting of enzymes that participate in protein palmitoylation and tyrosine phosphorylation regulatory pathways occurring at neuronal synapses. Experimental approaches draw on the PIs expertise using quantitative super-resolution fluorescence localization microscopy techniques and are combined with functional studies, theory, and simulation to test and refine mechanistic models of isolated and collective channel functions. The proposed work is innovative because it applies predictive models of membrane organization that are novel to both the channel and membrane domain communities. A broadly applicable framework for describing how domains modulate channel functions will drive advances in neuroscience by providing new insights into the functional basis for membrane changes with development and neurological disease, will motivate more effective and targeted treatments for neurological disease, and will connect the molecular-scale behaviors of channels to larger questions in neuroscience through the collective actions of lipids and membrane domains.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah L Veatch其他文献

Sarah L Veatch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah L Veatch', 18)}}的其他基金

Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
  • 批准号:
    10256046
  • 财政年份:
    2019
  • 资助金额:
    $ 26.08万
  • 项目类别:
Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
  • 批准号:
    10016343
  • 财政年份:
    2019
  • 资助金额:
    $ 26.08万
  • 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
  • 批准号:
    10183265
  • 财政年份:
    2014
  • 资助金额:
    $ 26.08万
  • 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
  • 批准号:
    9921409
  • 财政年份:
    2014
  • 资助金额:
    $ 26.08万
  • 项目类别:
Functional roles of lipids in early B cell receptor signaling SUPPLEMENT
脂质在早期 B 细胞受体信号传导中的功能作用
  • 批准号:
    9276225
  • 财政年份:
    2014
  • 资助金额:
    $ 26.08万
  • 项目类别:
Functional roles of lipids in early B cell receptor signaling.
脂质在早期 B 细胞受体信号传导中的功能作用。
  • 批准号:
    8668648
  • 财政年份:
    2014
  • 资助金额:
    $ 26.08万
  • 项目类别:
Functional roles of lipids in early B cell receptor signaling.
脂质在早期 B 细胞受体信号传导中的功能作用。
  • 批准号:
    9058146
  • 财政年份:
    2014
  • 资助金额:
    $ 26.08万
  • 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
  • 批准号:
    10393588
  • 财政年份:
    2014
  • 资助金额:
    $ 26.08万
  • 项目类别:
Mechanistic studies of membrane lateral organization in cell plasma membranes.
细胞质膜膜横向组织的机制研究。
  • 批准号:
    8146018
  • 财政年份:
    2009
  • 资助金额:
    $ 26.08万
  • 项目类别:
Mechanistic studies of membrane lateral organization in cell plasma membranes.
细胞质膜膜横向组织的机制研究。
  • 批准号:
    8133576
  • 财政年份:
    2009
  • 资助金额:
    $ 26.08万
  • 项目类别:

相似国自然基金

帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
    32170319
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
  • 批准号:
    31672538
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
  • 批准号:
    31372080
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
  • 批准号:
    81172529
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
  • 批准号:
    81070952
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
  • 批准号:
    30672361
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
  • 批准号:
    DP240103141
  • 财政年份:
    2024
  • 资助金额:
    $ 26.08万
  • 项目类别:
    Discovery Projects
Structural classification of NHEJ pathways; unravelling the role of Ku-binding proteins
NHEJ通路的结构分类;
  • 批准号:
    MR/X00029X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
    Research Grant
BRC-BIO: Evolutionary Patterns of Ice-Binding Proteins in North Pacific Intertidal Invertebrates
BRC-BIO:北太平洋潮间带无脊椎动物冰结合蛋白的进化模式
  • 批准号:
    2312378
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
    Standard Grant
Exploring the roles and functions of sex steroid hormone receptor-associated RNA binding proteins in the development of geriatric diseases.
探索性类固醇激素受体相关 RNA 结合蛋白在老年疾病发展中的作用和功能。
  • 批准号:
    23K06408
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
  • 批准号:
    10744556
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
Structural and computational analysis of immune-related RNA-binding proteins
免疫相关 RNA 结合蛋白的结构和计算分析
  • 批准号:
    23K06597
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of carbohydrate-binding proteins and their applications
碳水化合物结合蛋白的表征及其应用
  • 批准号:
    23K05034
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A machine learning approach to identify carbon dioxide-binding proteins for sustainability and health
一种机器学习方法来识别二氧化碳结合蛋白以实现可持续发展和健康
  • 批准号:
    2838427
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
    Studentship
The role of RNA binding proteins in heart development and congenital heart defects
RNA结合蛋白在心脏发育和先天性心脏缺陷中的作用
  • 批准号:
    10827567
  • 财政年份:
    2023
  • 资助金额:
    $ 26.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了