Identifying mucin O-glycans in the regulation of Staphylococcus aureus pathogenesis

鉴定粘蛋白 O-聚糖在金黄色葡萄球菌发病机制中的调节作用

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT The goal of this project is to leverage mucin O-glycans as potent natural compounds that suppress biofilm formation, aggregation, and other important virulence genes and pathways in the opportunistic pathogen Staphylococcus aureus (S. aureus). S. aureus causes numerous debilitating infections and is successful at persisting as robust biofilms. Biofilms are difficult to eradicate because they are able to evade host immunity, are tolerant to antimicrobials, and increase antibiotic-resistance emergence. Therapeutic strategies to suppress and prevent the S. aureus biofilm formation are urgently needed. Mucus functions as a key defense mechanism on epithelial linings of numerous organ systems and it can suppress numerous important virulence responses of S. aureus via the glycans displayed on mucin polymers. Therefore, mucus has strong potential for the development of new approaches to combat this problematic pathogen. Mucin polypeptide backbones are grafted with several hundred unique glycan structures. Their exceptional potential for virulence-attenuation of mucin- associated glycans has been recognized for some time, but because their individual bioactivities have been intractable to analysis, their potential has barely been tapped. We will close this gap by harnessing our collective expertise in microbiology, mucin biology, glycan chemistry, and in vivo infection models to identify single and small groups of mucin glycans that inhibit S. aureus biofilm formation and aggregation. Our pilot data strongly support the premise and feasibility of this study: mucin glycans suppress virulence genes involved with S. aureus biofilm formation, clumping/aggregation, and toxin-mediated lysis of human neutrophils, all of which are important in infection. These findings support a central role for mucin glycans in host protection and provide the impetus to identify glycan structures responsible for the anti-virulence effects. Our goal is to provide much- needed virulence-attenuating molecules to manage this problematic pathogen, drawn from the rich and untapped natural library of biological glycans underlying host defense. We will combine functional glycan analysis, microbiology, and in vivo infection studies to identify regulatory mucin O-glycans that impede S. aureus virulence. In Aim 1, we will harvest bioactive glycans from mucins to generate annotated libraries for functional analysis and identify those O-glycans that attenuate S. aureus biofilm formation and aggregation. In Aim 2, we will investigate the anti-virulence effects of mucin O-glycans in well-established human neutrophil- and in vivo infection models. This project is significant because it will empower us to elucidate and harness the myriad biological functions of glycans and mucins on S. aureus and its host. This proposal also sets a firm experimental groundwork that could lead to pivotal changes in the prevention and treatment of S. aureus infection. Moreover, many well-known antibiotics contain glycans as part of their core structure. Therefore, successful identification and in vivo validation of O-glycans that attenuate S. aureus virulence has the potential to create exciting new glycan-based or -mimetic therapeutics that enhance, or even replace, the use of antibiotics.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katharina Ribbeck其他文献

Katharina Ribbeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katharina Ribbeck', 18)}}的其他基金

Identifying mucin O-glycans in the regulation of Staphylococcus aureus pathogenesis
鉴定粘蛋白 O-聚糖在金黄色葡萄球菌发病机制中的调节作用
  • 批准号:
    10617215
  • 财政年份:
    2022
  • 资助金额:
    $ 20.42万
  • 项目类别:
Mucin Glycans in the Regulation of Microbial Virulence
粘蛋白聚糖在微生物毒力调节中的作用
  • 批准号:
    10374060
  • 财政年份:
    2013
  • 资助金额:
    $ 20.42万
  • 项目类别:
Mechanistic analysis of transport through the mucus barrier
通过粘液屏障的运输机制分析
  • 批准号:
    8613928
  • 财政年份:
    2013
  • 资助金额:
    $ 20.42万
  • 项目类别:
Mucin Glycans in the Regulation of Microbial Virulence
粘蛋白聚糖在微生物毒力调节中的作用
  • 批准号:
    9923034
  • 财政年份:
    2013
  • 资助金额:
    $ 20.42万
  • 项目类别:
Mechanistic analysis of transport through the mucus barrier
通过粘液屏障的运输机制分析
  • 批准号:
    8739538
  • 财政年份:
    2013
  • 资助金额:
    $ 20.42万
  • 项目类别:
Mechanistic analysis of transport through the mucus barrier
通过粘液屏障的运输机制分析
  • 批准号:
    8925078
  • 财政年份:
    2013
  • 资助金额:
    $ 20.42万
  • 项目类别:

相似海外基金

Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
  • 批准号:
    2902098
  • 财政年份:
    2024
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
  • 批准号:
    BB/Y004035/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
  • 批准号:
    FT230100468
  • 财政年份:
    2024
  • 资助金额:
    $ 20.42万
  • 项目类别:
    ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
  • 批准号:
    MR/Y033809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
  • 批准号:
    494853
  • 财政年份:
    2023
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
  • 批准号:
    2884862
  • 财政年份:
    2023
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
  • 批准号:
    2904356
  • 财政年份:
    2023
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了