Structure of GDAP1 bound to a product of lipid peroxidation
与脂质过氧化产物结合的 GDAP1 的结构
基本信息
- 批准号:10645396
- 负责人:
- 金额:$ 7.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationActive SitesAffectAffinityAnimal ModelAntioxidantsBindingBinding SitesBiochemicalBiochemistryBiologicalBiological AssayBrainCatalysisCell modelCell physiologyCellsCharcot-Marie-Tooth DiseaseComplexCytoprotectionDataDisease modelDockingDrug Metabolic DetoxicationEnzymatic BiochemistryEnzymesEventFoundationsFutureGDAP proteinGenesGenetic TranscriptionGlutathioneGlutathione S Transferase AGlutathione S-TransferaseGoalsHousingInheritedInvestigationLigand BindingLipid PeroxidationLipid PeroxidesLipidsLocationMalondialdehydeMeasuresMediatingMitochondriaModelingMolecularMolecular ConformationMutagenesisMutationNeuronsNeuropathyOuter Mitochondrial MembraneOxidation-ReductionOxidative StressPeripheral Nervous System DiseasesPersonsPhenotypePlayPoisonPositioning AttributePredispositionProteinsResolutionRoleShapesSignal TransductionSiteStructureSystemTherapeuticTherapeutic InterventionTimeTooth DiseasesUnited StatesVisualizationX-Ray CrystallographyXenobioticsadductautosomebiological adaptation to stressinterestknock-downmembermetabolic ratemitochondrial dysfunctionmolecular modelingmolecular pathologymutantnervous system disorderoverexpressionoxidative damageprotein protein interactionresponsesmall moleculesuccesstool
项目摘要
Summary.
Mutations in GDAP1 are associated with the peripheral neuropathy Charcot-Marie-Tooth disease. Charcot-Ma-
rie-Tooth is one of most common inherited neurological disorders, estimated to affect 126,000 people in the
United States alone. GDAP1 knockdown, overexpression, and as well as multiple models of CMT show changes
consistent with dysregulation of the cellular response to oxidative stress. These include changes in NRF2-driven
transcriptional activity, evidence of glutathione depletion, redox disbalance, and mitochondrial depolarization. At
the same time key aspects of the mitochondrial network’s response to oxidative stress are very similar to key
aspects of CMT phenotypes: fragmentation, fusion deficits and change in position inside the cell. Finally, GDAP1
is a member of the Glutathione S-transferase (GST) superfamily which protect the cell against peroxidated lipids
and xenobiotics, toxic molecules that accumulate under conditions of oxidative stress. The mechanism underly-
ing GDAP1’s role in oxidative stress response is unknown. We have recently discovered that GDAP1 can bind
4-hydroxynoneal (4HNE), a toxic lipid that is formed from the breakdown of peroxidated lipids primarily in the
mitochondria. This proposal will address two main questions: can GDAP1 utilize 4HNE as a substrate, in a
manner similar to canonical GST enzymes, or does it have a non-enzymatic role in the oxidative stress re-
sponse? Secondly, are there conformational changes associated with or a consequence of 4HNE binding? We
will address these questions by 1) biochemically measuring enzymatic parameters associated with 4HNE medi-
ated GST activity; 2) biochemically defining the impact of important residues within the putative active site pocket
on 4HNE binding affinity and GST enzymatic activity; 3) determining the structure of the GDAP1-4HNE complex
using x-ray crystallography. These data will define the molecular mechanism by which GDAP1 recognizes 4HNE
to facilitate binding and reveal and conformational changes in protein that are associated with 4HNE binding. If
GDAP1 is an enzyme it will reveal how it facilitates catalysis of 4HNE with glutathione. If GDAP1 is playing a
non-enzymatic role, conformational changes resulting from 4HNE will play a key role in GDAP1 function and will
be revealed in this structure. Overall, these studies will be critical in shaping future biochemical and cell-based
investigations centered on GDAP1 function. Further, the structure will provide the foundation needed to compu-
tationally predict small molecule binding partners, critical tools for modulating GDAP1 function that will allow
deeper interrogation of CMT disease models and a first step towards therapeutic intervention.
摘要
GDAP 1突变与周围神经病Charcot-Marie-Tooth病相关沙尔科马
裂齿症是最常见的遗传性神经系统疾病之一,据估计,
只有美国。GDAP 1敲低、过表达以及多种CMT模型显示了变化,
与细胞对氧化应激反应的失调一致。这些变化包括NRF 2驱动的
转录活性、谷胱甘肽耗竭、氧化还原失衡和线粒体去极化的证据。在
与此同时,线粒体网络对氧化应激反应的关键方面非常类似于
CMT表型的方面:片段化、融合缺陷和细胞内位置的变化。最后,GDAP 1
是谷胱甘肽S-转移酶(GST)超家族的成员,其保护细胞免受过氧化脂质的侵害
和外源性物质,即在氧化应激条件下积累的有毒分子。其背后的机制-
GDAP 1在氧化应激反应中的作用尚不清楚。我们最近发现GDAP 1可以结合
4-羟基壬烯醛(4 HNE)是一种有毒脂质,主要由体内的过氧化脂质分解形成。
线粒体该提案将解决两个主要问题:GDAP 1是否可以利用4 HNE作为底物,
方式类似于典型的GST酶,或者它在氧化应激反应中具有非酶促作用,
sponse?其次,是否存在与4 HNE结合相关的构象变化或4 HNE结合的结果?我们
将通过1)生物化学测量与4 HNE介质相关的酶参数来解决这些问题,
2)生物化学定义推定活性位点口袋内重要残基的影响
对4 HNE结合亲和力和GST酶活性的影响; 3)确定GDAP 1 - 4 HNE复合物的结构
使用X射线晶体学。这些数据将定义GDAP 1识别4 HNE的分子机制
以促进结合并揭示与4 HNE结合相关的蛋白质中的构象变化。如果
GDAP 1是一种酶,它将揭示它如何促进谷胱甘肽催化4 HNE。如果GDAP 1正在播放
非酶促作用,4 HNE引起的构象变化将在GDAP 1功能中发挥关键作用,
在这个结构中显露出来。总的来说,这些研究将是至关重要的,在塑造未来的生化和细胞为基础的
以GDAP 1功能为中心的研究。此外,该结构将提供计算所需的基础,
静态预测小分子结合伴侣,调节GDAP 1功能的关键工具,
这是对CMT疾病模型的更深入研究,也是迈向治疗干预的第一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW Paul VANDEMARK其他文献
ANDREW Paul VANDEMARK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW Paul VANDEMARK', 18)}}的其他基金
The Structural Basis of Shroom-Mediated Cell Contractility
蘑菇介导的细胞收缩性的结构基础
- 批准号:
8692911 - 财政年份:2011
- 资助金额:
$ 7.23万 - 项目类别:
The Structural Basis of Shroom-Mediated Cell Contractility
蘑菇介导的细胞收缩性的结构基础
- 批准号:
8883569 - 财政年份:2011
- 资助金额:
$ 7.23万 - 项目类别:
The Structural Basis of Shroom-Mediated Cell Contractility
蘑菇介导的细胞收缩性的结构基础
- 批准号:
8081650 - 财政年份:2011
- 资助金额:
$ 7.23万 - 项目类别:
The Structural Basis of Shroom-Mediated Cell Contractility
蘑菇介导的细胞收缩性的结构基础
- 批准号:
8289424 - 财政年份:2011
- 资助金额:
$ 7.23万 - 项目类别:
The Structural Basis of Shroom-Mediated Cell Contractility
蘑菇介导的细胞收缩性的结构基础
- 批准号:
8499374 - 财政年份:2011
- 资助金额:
$ 7.23万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 7.23万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




