Biophysical mechanism and synthetic engineering of optically-controlled Ca2+-powered supramolecular engines
光控Ca2驱动超分子发动机的生物物理机制与合成工程
基本信息
- 批准号:10653947
- 负责人:
- 金额:$ 39.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressBiochemistryBiophysical ProcessBiophysicsBiosensorCalciumCalcium ionCellsChemicalsContractsCytoskeletonDevicesDrug Delivery SystemsElasticityElementsEnergy-Generating ResourcesEngineeringGenerationsGuanosine TriphosphateIn VitroKinesinKnowledgeLengthLightLipidsMechanicsMicrofluidic MicrochipsMicroscopyMicrotubulesModelingMolecular MotorsMotionMovementMyosin ATPaseOpticsOutputPhysicsPolymersProteinsResearchStrokeStructureSystemTherapeuticTrimethoprim-SulfamethoxazoleVertebral columnVesicleWorkbiophysical techniquesdesignexperimental studyin vivomathematical theorymillimetermillisecondnanomachinenanoscalenovelresponseself assemblysimulationsynthetic biology
项目摘要
PROJECT ABSTRACT
Myonemes are calcium-powered supramolecular protein `springs’ that form the force-generating cytoskeletal
structure in some protozoan ciliates such as Spirostomum ambiguum. In Spirostomum, myonemes
extraordinarily high-power outputs (equivalent to a 2-stroke diesel engine) that enable Spirostomum to contract
to 1/4th of its body length in less than 5 milliseconds (one of the fastest motions at the single cell level). In terms
of power per unit mass, myonemes generate six orders of magnitude more force than conventional ATP-powered
molecular motors such as myosin or kinesin. Myonemes do not contain conventional cytoskeletal elements such
as actin, microtubules or myosin. Rather, myonemes comprise of self-assemblies of two-components: centrin
proteins that are calcium-responsive and Sfi1, an elastic backbone protein. Thus, myonemes offer attractive
features such as non-ATP dependent actuation, ultrafast and high-power delivery and a simple two-component
system, that could enable potentially transformational synthetic biology applications, such as design of artificial
cytoskeletons for synthetic or biohybrid cells to enable them to divide, move or transport cargo similar to their
living counterparts. However, there exists key gaps in our knowledge on the governing biophysical mechanism
of force generation in these springs, how calcium ions act as chemical latches to control and synchronize force
deliver over millimeter length scales, and how these supramolecular assemblies can be synthetically engineered
and self-assembled in-vitro for harnessing them for desired functionalities.
To address these gaps in understanding, the proposed research over the next 5 years will take a two-pronged
approach: i) combine biophysical experiments, live microscopy and soft matter physics-based models to uncover
the biophysical mechanism of force-generation in myonemes in-vivo in living cells, and ii) engineer, self-
assemble and incorporate light-control in synthetic myonemes (synMyo) in-vitro in microfluidic devices and lipid
vesicles. Finally, this work will also utilize mathematical theory and numerical simulations to support our findings.
Long-term, this research will open up a fundamentally new class of nanoscale, Ca2+-based, and light-actuatable
synthetic force generating cytoskeletal assemblies, with applications in intracellular actuation and sensing,
therapeutic drug-delivery devices and artificial cytoskeletons in synthetic cells. For synthetic cells, these
supramolecular springs can enable new mechanical functionalities, such as faster contraction than any
microtubule or actin based system could offer; localized force generation free from polymer tracks; controllability
that is orthogonalized from cell-specific biochemistry; and a novel, non-ATP- or GTP-based energy source to
power movement inside cells.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAAD BHAMLA其他文献
SAAD BHAMLA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAAD BHAMLA', 18)}}的其他基金
Frugal Science Academy: Training K-12 innovators and democratizing synthetic biology tools
节俭科学院:培训 K-12 创新者并使合成生物学工具民主化
- 批准号:
10705579 - 财政年份:2022
- 资助金额:
$ 39.55万 - 项目类别:
Frugal Science Academy: Training K-12 innovators and democratizing synthetic biology tools
节俭科学院:培训 K-12 创新者并使合成生物学工具民主化
- 批准号:
10450255 - 财政年份:2022
- 资助金额:
$ 39.55万 - 项目类别:
Biophysical mechanism and synthetic engineering of optically-controlled Ca2+- powered supramolecular engines
光控Ca2驱动超分子发动机的生物物理机制与合成工程
- 批准号:
10797665 - 财政年份:2021
- 资助金额:
$ 39.55万 - 项目类别:
Biophysical mechanism and synthetic engineering of optically-controlled Ca2+-powered supramolecular engines
光控Ca2驱动超分子发动机的生物物理机制与合成工程
- 批准号:
10273361 - 财政年份:2021
- 资助金额:
$ 39.55万 - 项目类别:
Biophysical mechanism and synthetic engineering of optically-controlled Ca2+-powered supramolecular engines
光控Ca2驱动超分子发动机的生物物理机制与合成工程
- 批准号:
10472629 - 财政年份:2021
- 资助金额:
$ 39.55万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Research Grant














{{item.name}}会员




