Metabolic cytometry for in-line process analysis
用于在线过程分析的代谢细胞术
基本信息
- 批准号:10698665
- 负责人:
- 金额:$ 28.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2025-03-14
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAnabolismBiological ProductsBiological Response Modifier TherapyBiomanufacturingBioreactorsCell Culture TechniquesCell ExtractsCell LineCell ProliferationCell physiologyCellsCellular MorphologyClinicalCollaborationsCollectionComplexCytometryDataDevelopmentDiseaseEmbryoEvaluationFiberFlavin-Adenine DinucleotideFluorescenceFutureGene DeliveryGene Transduction AgentGenesGoalsGovernmentGrowthHarvestHereditary DiseaseHumanIndividualInfectionInvestigationInvestmentsKidneyLife ExpectancyLightMammalian CellMassachusettsMeasurementMeasuresMetabolicMetabolismMethodologyMonitorNicotinamide adenine dinucleotideNoiseOpticsOrganismOxidation-ReductionPathway interactionsPatientsPerformancePersonsPharmaceutical PreparationsPhaseProcessProductionProductivityResearchResolutionSamplingSignal TransductionSpecificitySpectrum AnalysisSuspension CultureSystemTechniquesTechnologyTherapeuticTimeUniversitiesValidationViralViral Vectorbioprocesscommercializationdesignfluorophoregene productgene therapyimprovedinhibitorinnovationinstrumentlarge scale productionmanufacturemanufacturing capabilitiesmedical schoolsmetabolomicsminiaturizenoveloperationphysical sciencepreventprogramspromoterprototypesensorsuccesstechnology developmenttemporal measurementtherapeutic genetoolvirology
项目摘要
Project Summary/Abstract
Gene therapy uses genes to prevent and/or treat acquired disorders and inherited genetic diseases.
Recently, the intensive investigation of human genes and related diseases has improved the capability of gene
therapy as a promising future therapy that can significantly increase life expectancy for millions of patients
suffering from incurable diseases. This promise has accelerated the exponential growth in the field of gene
therapy. However, the clinical potential of gene therapy remains largely unleashed, mainly due to the limited
biomanufacturing capacity of gene delivery products for clinical and commercial use. Manufacturing of gene
therapeutic biologics involves harvesting viral vectors in mammalian cell cultures which are highly complex
and difficult to control. The lack of understanding and control of the viral production processes has led to
manufacturing challenges including low productivity, instability of cell lines, high levels of impurities, and
difficult scalability with consistent product quality. Therefore, new biomanufacturing analytical technologies
are critically needed to improve the understanding of the bioprocess dynamics and to support development of
robust and efficient biomanufacturing processes.
Physical Sciences Inc. (PSI), in collaboration with the University of Massachusetts Lowell (UML) proposes
to develop a novel biomanufacturing process analytical technology tool that enables in-line, continuous
measurement of the metabolism of host cells in bioreactors for the large-scale manufacturing of therapeutic
viral vectors. A novel metabolic cytometry sensor probe that measures the autofluorescence of intracellular
metabolites will be used for real-time assessment of cellular-level redox metabolic state. An innovative
spatially and temporally confined spectroscopy approach is used to efficiently differentiate fluorescence
signals of intracellular metabolites from the nonspecific light background, achieving high specificity
measurement of cellular physiology. During the Phase I program, a prototype fiber-based fluorescence
cytometry probe system will be fabricated and evaluated, demonstrating the capability of the real-time
metabolic measurement during bioreactor operations for viral vector production. Technology maturation and
application demonstrations in additional bioreactors using a variety of culture organisms will be performed
during the Phase II program. Successful development of this technology will contribute to significant
improvement in the understanding and control of bioprocesses for large-scale manufacturing of viral vector
products for gene therapy.
项目总结/摘要
基因疗法使用基因来预防和/或治疗获得性疾病和遗传性遗传疾病。
近年来,对人类基因和相关疾病的深入研究提高了基因诊断的能力,
治疗作为一种有前途的未来疗法,可以显着增加数百万患者的预期寿命
患有不治之症这一前景加速了基因领域的指数增长
疗法然而,基因治疗的临床潜力仍然在很大程度上释放,主要是由于有限的
用于临床和商业用途的基因递送产品的生物制造能力。基因制造
治疗性生物制剂涉及在哺乳动物细胞培养物中收获病毒载体,
很难控制对病毒生产过程缺乏了解和控制,
制造挑战包括生产率低、细胞系不稳定、杂质水平高,以及
难以实现可扩展性和一致的产品质量。因此,新的生物制造分析技术
是迫切需要的,以提高对生物过程动力学的理解,并支持发展
强大而高效的生物制造工艺。
物理科学公司(PSI),与马萨诸塞州洛厄尔大学(UML)合作,提出
开发一种新型的生物制造过程分析技术工具,
用于大规模生产治疗药物的生物反应器中宿主细胞代谢的测量
病毒载体一种测量细胞内自发荧光的新型代谢细胞术传感器探针
代谢物将用于实时评估细胞水平的氧化还原代谢状态。一个创新
空间和时间限制的光谱方法用于有效区分荧光
非特异性光背景下的细胞内代谢物信号,实现高特异性
细胞生理学的测量。在第一阶段计划中,一个基于光纤的荧光原型
将制造和评估细胞仪探针系统,证明实时的能力,
用于病毒载体生产的生物反应器操作期间的代谢测量。技术成熟和
将在使用各种培养生物的其他生物反应器中进行应用示范
在第二阶段计划中。这项技术的成功开发将有助于重大的
对大规模生产病毒载体的生物工艺的理解和控制的改进
基因治疗产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesung Park其他文献
Jesung Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesung Park', 18)}}的其他基金
Smart Multi-grid Template for Focal Therapy of Prostate Cancer
用于前列腺癌局部治疗的智能多网格模板
- 批准号:
10382006 - 财政年份:2021
- 资助金额:
$ 28.62万 - 项目类别:
Multimodal Endoscopic Probe for Inner Ear Hearing Loss Diagnosis and Therapy Guidance
用于内耳听力损失诊断和治疗指导的多模态内窥镜探头
- 批准号:
9926232 - 财政年份:2016
- 资助金额:
$ 28.62万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 28.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)