Engineering and Imaging 3D genome structure-function dynamics across time scales
工程与成像 跨时间尺度的 3D 基因组结构-功能动态
基本信息
- 批准号:10656401
- 负责人:
- 金额:$ 112.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptedAmalgamArchitectureBiologicalBiological ModelsBiological ProcessCell Cycle StageCell NucleusCell SeparationCellsChIP-seqCharacteristicsChromatinChromatin LoopClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexDNADNA sequencingDataDevelopmentElectric StimulationEngineeringEnhancersEpigenetic ProcessErythroid CellsEventFrequenciesG1 PhaseGene ExpressionGenesGenetic MaterialsGenetic TranscriptionGenomeGenome MappingsGenome engineeringGenomicsHi-CHourHumanImageImaging DeviceImaging TechniquesImaging technologyImmediate-Early GenesInduced pluripotent stem cell derived neuronsLightLinkMapsMeasuresMediatingMetaphaseMethodologyMitosisMitoticMonitorMusNeurobiologyNeuronsPeptide Sequence DeterminationPharmaceutical PreparationsPhase TransitionPhenotypePopulationProductivityProteinsQiRNAReporterResearch PersonnelResistanceResolutionRoleSomatic CellStimulusStructureStructure-Activity RelationshipSystemTechnologyTestingTimeTranscriptVisualizationYY1 Transcription Factorbasebiological systemscancer cellcancer therapycell fixingcell typecellular imagingcohesindesignexperimental studygenome-wide analysisinduced pluripotent stem cellinsightinterestlive cell imagingmammalian genomemelanomanew technologypluripotencypromoterresponsesingle moleculetechnology platformtime usetoolultra high resolution
项目摘要
The mammalian genome folds into tens of thousands of long-range looping interactions. A
critical unknown is whether and how chromatin loops control gene expression, and a major
unresolved question is how the temporal progression of loops relates to transcription dynamics.
One major barrier to answering this question is that loops change on a range of timescales,
necessitating the use of tools and model systems amenable to tracking and engineering loops
longitudinally and in real time on both short and long timing. Here, we propose to develop and
apply new engineering and imaging tools to measure, induce, and perturb loops with precise
temporal control in three different biological systems spanning minutes, hours, and weeks. At
the shortest timescale (minutes, Aim 1), we will examine loop dynamics in human induced
pluripotent stem cell-derived neurons in response to electrical stimulation, revealing how
interaction frequency is functionally connected to transcriptional bursting of immediate early and
secondary response genes. On the timescale of hours (Aim 3), we will elucidate how the
architectural protein YY1 connects enhancer-promoter loops that re-assemble upon the exit
from mitosis by erythroid cells. On the timescale of weeks (Aim 2), we will use a cellular “Time
Machine” to longitudinally track the rare cells that undergo cellular reprogramming, allowing us
to dissect the functionality of loop formation and dissolution with single-cell and subcellular
resolution during the reprogramming of somatic cells to pluripotency and transition of melanoma
cancer cells to a resistant phenotype. Our team consists of a highly productive and collaborative
set of junior and senior investigators with complementary expertise and overlapping interests,
including Dr. Gerd Blobel (epigenetics, mitosis, loop engineering), Dr. Eric Joyce (Oligopaints
imaging), Dr. Bomyi Lim (nascent transcript live cell imaging), Dr. Jennifer Phillips-Cremins
(chromatin architecture, loop engineering, neurobiology), Dr. Stanley Qi (CRISPR genome
engineering, live cell imaging), and Dr. Arjun Raj (single cell genomics, RNA imaging,
reprogramming). We will develop and apply live and fixed cell imaging techniques for chromatin
contacts, and in the same cells image nascent transcription. We will build a cadre of synthetic
architectural proteins to engineer loops in a time-dependent inducible manner. Successful
application of our engineering and imaging tools across biological systems will yield a
comprehensive and rigorous assessment of the cause-and-effect relationship between loops
and distinct biological phenotypes across timescales.
哺乳动物的基因组折叠成数万个长距离循环相互作用。一
关键的未知是染色质环是否以及如何控制基因表达,
尚未解决的问题是循环的时间进展如何与转录动力学相关。
回答这个问题的一个主要障碍是循环在一个时间尺度范围内变化,
这就需要使用适合于跟踪和工程循环的工具和模型系统
纵向地并且在真实的时间上在短定时和长定时两者上。在这里,我们建议发展和
应用新的工程和成像工具来测量,诱导和扰动回路,
时间控制在三个不同的生物系统跨越分钟,小时和星期。在
最短的时间尺度(分钟,目标1),我们将研究循环动力学在人类诱导
多能干细胞衍生的神经元对电刺激的反应,揭示了如何
相互作用频率在功能上与即时早期的转录爆发有关,
次级反应基因在小时的时间尺度上(目标3),我们将阐明
结构蛋白YY 1连接增强子-启动子环,
由红系细胞的有丝分裂而成。在以周为单位的时间尺度上(目标2),我们将使用一个细胞“时间
机器”纵向跟踪经历细胞重编程的稀有细胞,
用单细胞和亚细胞的方法来剖析环的形成和溶解的功能,
在体细胞重编程为多能性和黑色素瘤转变期间的分辨率
转化为耐药表型。我们的团队由一个高效和协作的
一组初级和高级调查员,具有互补的专业知识和重叠的兴趣,
包括Gerd Blobel博士(表观遗传学,有丝分裂,环工程),Eric Joyce博士(Oligopaints
Bomyi Lim博士(新生转录活细胞成像),Jennifer Phillips-Cremins博士
(染色质结构,环工程,神经生物学),Stanley Qi博士(CRISPR基因组
工程,活细胞成像),和Arjun Raj博士(单细胞基因组学,RNA成像,
重编程)。我们将开发和应用染色质的活细胞和固定细胞成像技术
接触,并在相同的细胞图像新生转录。我们将建立一个综合的干部
结构蛋白以时间依赖性诱导方式工程化环。成功
我们的工程和成像工具在生物系统中的应用将产生一个
全面、严格地评估循环之间的因果关系
和不同的生物表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerd A Blobel其他文献
Genome folding dynamics during the M-to-G1-phase transition
M 期到 G1 期转变过程中的基因组折叠动力学
- DOI:
10.1016/j.gde.2023.102036 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:3.600
- 作者:
Haoyue Zhang;Gerd A Blobel - 通讯作者:
Gerd A Blobel
Controlling long-range genomic interactions to reprogram the β-globin locus
- DOI:
10.1186/1756-8935-6-s1-o39 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:3.500
- 作者:
Wulan Deng;Jeremy W Rupon;Hongxin Wang;Andreas Reik;Philip D Gregory;Gerd A Blobel - 通讯作者:
Gerd A Blobel
Gerd A Blobel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerd A Blobel', 18)}}的其他基金
Engineering and Imaging 3D genome structure-function dynamics across time scales
工程与成像 跨时间尺度的 3D 基因组结构-功能动态
- 批准号:
10264929 - 财政年份:2020
- 资助金额:
$ 112.21万 - 项目类别:
Engineering and Imaging 3D genome structure-function dynamics across time scales
工程与成像 跨时间尺度的 3D 基因组结构-功能动态
- 批准号:
10456233 - 财政年份:2020
- 资助金额:
$ 112.21万 - 项目类别:
Engineering and visualizing genome folding at high spatiotemporal resolution
以高时空分辨率对基因组折叠进行工程设计和可视化
- 批准号:
10001247 - 财政年份:2019
- 资助金额:
$ 112.21万 - 项目类别:
Engineering and visualizing genome folding at high spatiotemporal resolution
以高时空分辨率对基因组折叠进行工程设计和可视化
- 批准号:
9003449 - 财政年份:2015
- 资助金额:
$ 112.21万 - 项目类别:
Engineering and visualizing genome folding at high spatiotemporal resolution
以高时空分辨率对基因组折叠进行工程设计和可视化
- 批准号:
9762161 - 财政年份:2015
- 资助金额:
$ 112.21万 - 项目类别:
Engineering and visualizing genome folding at high spatiotemporal resolution
以高时空分辨率对基因组折叠进行工程设计和可视化
- 批准号:
9144858 - 财政年份:2015
- 资助金额:
$ 112.21万 - 项目类别:
Engineering and visualizing genome folding at high spatiotemporal resolution
以高时空分辨率对基因组折叠进行工程设计和可视化
- 批准号:
9323543 - 财政年份:2015
- 资助金额:
$ 112.21万 - 项目类别:
Functions, mechanisms, and therapeutic potential of chromatin looping
染色质环化的功能、机制和治疗潜力
- 批准号:
8714048 - 财政年份:2013
- 资助金额:
$ 112.21万 - 项目类别:
Functions, mechanisms, and therapeutic potential of fetal hemoglobin inducers
胎儿血红蛋白诱导剂的功能、机制和治疗潜力
- 批准号:
10308676 - 财政年份:2013
- 资助金额:
$ 112.21万 - 项目类别:
Functions, mechanisms, and therapeutic potential of chromatin looping
染色质环化的功能、机制和治疗潜力
- 批准号:
8559656 - 财政年份:2013
- 资助金额:
$ 112.21万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 112.21万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 112.21万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 112.21万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 112.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 112.21万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 112.21万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 112.21万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 112.21万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 112.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 112.21万 - 项目类别:
Research Fellowships














{{item.name}}会员




