Systems biology approach to elucidate complex metabolic dependencies in the evolution of antibiotic resistance
系统生物学方法阐明抗生素耐药性进化中复杂的代谢依赖性
基本信息
- 批准号:10659296
- 负责人:
- 金额:$ 31.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBacteriaBacterial PhysiologyBiochemical PathwayCell Membrane PermeabilityClinicalCollaborationsCommunicable DiseasesComplexComputer ModelsDataDependenceDevelopmentDrug resistanceEnvironmentEssential GenesEvolutionExperimental ModelsGene ExpressionGenesGenomicsGrowthInfectionKnowledgeLinkLungMetabolicMetabolismMethodsMicrobeModelingMutationNosocomial InfectionsOpportunistic InfectionsOrganismPathway interactionsPhenotypePhysiologicalPopulationPseudomonas aeruginosaReactionResearch PersonnelResistanceSiteStaphylococcus aureusSystemSystems BiologyTestingUncertaintyUnited StatesUrinary tractValidationWorkantimicrobialantimicrobial resistant pathogenbacterial resistancechronic woundclinical phenotypeclinically relevantcombatefflux pumpemerging antimicrobial resistanceexperimental studyhuman pathogenmachine learning methodmicrobialmicroorganismmultiple omicsnetwork modelsnovel strategiesnovel therapeutic interventionopportunistic pathogenpathogenphenotypic datapredictive modelingpreferencereconstructionresistance mechanismresistant straintherapeutic targettranscriptomicsuptake
项目摘要
Project Summary
We propose a systems biology approach to investigate the connection between metabolism and the emergence
of antimicrobial resistance (AMR) in two prominent human pathogens, Pseudomonas aeruginosa and
Staphylococcus aureus, within the context of physiologically-relevant environments. Two of the most serious
threats for AMR, P. aeruginosa and S. aureus cause more than 30,000 and 300,000 drug-resistant infections
per year in the United States, respectively [4]. The objective of this R01 application is to construct computational
metabolic network models of antimicrobial-resistant and -sensitive P. aeruginosa and S. aureus and to
experimentally validate model predictions of metabolic genes and pathways supporting their evolution towards
resistance. To combat opportunistic and nosocomial infections, antimicrobials have been developed for clinical
use; yet with every new antimicrobial introduced, the aforementioned pathogens have quickly evolved resistance
[12, 13]. Therefore, new approaches are urgently needed to limit emergence and expansion of AMR in these
species. With a focus in this application on Gram-negative (P. aeruginosa) and Gram-positive (S. aureus)
bacteria, we will compare metabolic functions supportive of antimicrobial resistance to evaluate whether the
metabolic genes and pathways observed to be critical are unique to an organism or a more general mechanism
of metabolic adaptation. We posit that a combination of phenotyping, computational modeling, and
analysis of clinical antimicrobial-resistant strains will reveal bacterial metabolic processes that are
central to the growth of antimicrobial-resistant microbes and can be modulated to select against growth
of antimicrobial-resistant populations. Data from our lab and others have recently found that antimicrobial-
resistant P. aeruginosa and S. aureus display systems-level differences in metabolism [2, 14-16]. Furthermore,
data collected from experiments will enable: novel approaches to integrate gene expression data with metabolic
network models for complex environments, ensemble methods that better account for uncertainty in metabolic
network reconstructions, and machine learning methods to delineate metabolic states that correlate with AMR
in clinical isolates. The significance of the proposed work lies in the mechanistic understanding of essential
genes, reactions, and substrate preferences that underlie the development of AMR in two clinically important
pathogens. Further, metabolic states will be characterized in clinical isolates to support the relevance of the
systematic interrogation of metabolic dependencies in the development of AMR. The knowledge gap this work
will address is the mechanistic link between metabolism and the development of AMR. With the successful
implementation of the proposed project, we will identify several potential therapeutic targets in clinically important
pathogens as well as establish a framework for how such computational model-driven approaches can be
applied to other antimicrobial resistant pathogens.
项目摘要
我们提出了一个系统生物学的方法来调查之间的联系代谢和出现
两种主要的人类病原体,铜绿假单胞菌和
金黄色葡萄球菌,在生理相关环境中。两个最严重的
AMR、铜绿假单胞菌和S.金黄色葡萄球菌导致超过30,000和300,000耐药感染
在美国,每年[4]。此R 01应用程序的目标是构建计算
铜绿假单胞菌和S.金黄色葡萄球菌和
实验验证模型预测的代谢基因和途径,支持他们的进化,
阻力为了对抗机会性感染和医院感染,已经开发了用于临床的抗微生物剂。
使用;然而,随着每一种新的抗菌剂的引入,上述病原体很快就产生了耐药性。
[12,13]。因此,迫切需要新的方法来限制这些地区AMR的出现和扩大。
物种本申请集中于革兰氏阴性菌(铜绿假单胞菌)和革兰氏阳性菌(S。aureus)
细菌,我们将比较支持抗菌素耐药性的代谢功能,以评估
观察到的关键代谢基因和途径是生物体所特有的或更普遍的机制
代谢适应性。我们认为,表型分析、计算建模和
对临床抗生素耐药菌株的分析将揭示细菌的代谢过程,
对抗微生物剂抗性微生物的生长至关重要,并且可以被调节以选择对抗生长
对抗生素有抗药性的人群。我们实验室和其他实验室的数据最近发现,抗菌剂-
耐药铜绿假单胞菌和S.金黄色葡萄球菌在代谢中显示系统水平的差异[2,14-16]。此外,委员会认为,
从实验中收集的数据将使:新的方法来整合基因表达数据与代谢
复杂环境的网络模型,更好地解释代谢不确定性的集成方法,
网络重建和机器学习方法来描述与AMR相关的代谢状态
在临床分离物中。所提出的工作的意义在于机械地理解本质
基因、反应和底物偏好是两种临床重要的AMR发展的基础,
病原体此外,代谢状态将在临床分离株中表征,以支持代谢状态与临床分离株的相关性。
AMR发展过程中代谢依赖性的系统研究。知识差距这项工作
将解决的是代谢和AMR的发展之间的机制联系。随着成功
实施拟议的项目,我们将确定几个潜在的治疗目标,在临床上重要的
病原体以及建立一个框架,如何计算模型驱动的方法可以
应用于其他抗微生物耐药病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Papin其他文献
Jason Papin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Papin', 18)}}的其他基金
Systems biology of microbe-mediated glucosinolate bioconversion in inflammatory bowel disease
炎症性肠病微生物介导的芥子油苷生物转化的系统生物学
- 批准号:
10179960 - 财政年份:2018
- 资助金额:
$ 31.02万 - 项目类别:
Systems biology of microbe-mediated glucosinolate bioconversion in inflammatory bowel disease
炎症性肠病微生物介导的芥子油苷生物转化的系统生物学
- 批准号:
10223195 - 财政年份:2018
- 资助金额:
$ 31.02万 - 项目类别:
Systems biology of microbe-mediated glucosinolate bioconversion in inflammatory bowel disease
炎症性肠病微生物介导的芥子油苷生物转化的系统生物学
- 批准号:
9788271 - 财政年份:2018
- 资助金额:
$ 31.02万 - 项目类别:
Mapping and predicting metabolic fluxes between the ileal microbiome and host
绘制和预测回肠微生物组和宿主之间的代谢通量
- 批准号:
8986799 - 财政年份:2014
- 资助金额:
$ 31.02万 - 项目类别:
Mapping and predicting metabolic fluxes between the ileal microbiome and host
绘制和预测回肠微生物组和宿主之间的代谢通量
- 批准号:
8791700 - 财政年份:2014
- 资助金额:
$ 31.02万 - 项目类别:
Mapping and predicting metabolic fluxes between the ileal microbiome and host
绘制和预测回肠微生物组和宿主之间的代谢通量
- 批准号:
9195132 - 财政年份:2014
- 资助金额:
$ 31.02万 - 项目类别:
Mapping and predicting metabolic fluxes between the ileal microbiome and host
绘制和预测回肠微生物组和宿主之间的代谢通量
- 批准号:
8605628 - 财政年份:2014
- 资助金额:
$ 31.02万 - 项目类别:
相似海外基金
The effects of antibiotics to the transfer frequency of the antibiotic resistance genes and the evolution of high-level resistance.
抗生素对抗生素抗性基因转移频率和高水平抗性进化的影响。
- 批准号:
22K05790 - 财政年份:2022
- 资助金额:
$ 31.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019687/2 - 财政年份:2019
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
Combating Antibiotic Resistance to Aminoglycoside Antibiotics through Chemical Synthesis
通过化学合成对抗氨基糖苷类抗生素的耐药性
- 批准号:
392481159 - 财政年份:2017
- 资助金额:
$ 31.02万 - 项目类别:
Research Fellowships
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019687/1 - 财政年份:2016
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019857/1 - 财政年份:2016
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
- 批准号:
366555 - 财政年份:2016
- 资助金额:
$ 31.02万 - 项目类别:
Operating Grants
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019717/1 - 财政年份:2016
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
- 批准号:
361307 - 财政年份:2016
- 资助金额:
$ 31.02万 - 项目类别:
Operating Grants
Contamination status of antibiotics and antibiotic resistance genes (ARGs) in tropical Asian aquatic environments with artificial and natural disturbance
人工和自然干扰下亚洲热带水生环境中抗生素和抗生素抗性基因(ARG)的污染状况
- 批准号:
25257402 - 财政年份:2013
- 资助金额:
$ 31.02万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
RAPID: COLLABORATIVE RESEARCH: Fate and Transport of Antibiotics and Antibiotic Resistance Genes During Historic Colorado Flood
快速:合作研究:历史性科罗拉多洪水期间抗生素和抗生素抗性基因的命运和运输
- 批准号:
1402635 - 财政年份:2013
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant














{{item.name}}会员




