Small Scale Robotics for Automated Dental Biofilm Theranostics
用于自动化牙科生物膜治疗的小型机器人
基本信息
- 批准号:10658028
- 负责人:
- 金额:$ 63.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAnatomyApicalAreaBiologicalCell SurvivalClinicalCollectionComplexCoupledDataDentalDetectionDevelopmentDevicesDiagnosisDiagnosticDisinfectionDrug Delivery SystemsElectromagneticsEndodonticsEnsureExcisionFamily suidaeFoundationsFutureGeometryHumanIn SituInfectionIrrigationJawLicensingLocationMagnetismMammalian CellManualsMechanicsMedicineMethodsMicrobial BiofilmsModalityModelingMoldsMorphologyMotionMovementNanotechnologyNeedlesOralOral cavityOutcomePerformancePeroxidasesPharmaceutical PreparationsPolymersPre-Clinical ModelProceduresPropertyPulp CanalsRetrievalRobotRoboticsSamplingShapesSiteSmall Business Innovation Research GrantStructureSystemTechnologyTestingTherapeuticTooth structureUltrasonicsVisualizationantimicrobialbactericideclinical applicationcommercializationconventional therapycostcytotoxicitydental biofilmdesignefficacy studyefficacy testingfollow-upimprovedin vivoiron oxide nanoparticlemagnetic fieldmicrorobotnanoparticlenew technologynovel strategiesoral biofilmparticleperiapicalpolymicrobial biofilmprototyperesponserobotic devicerobotic systemsoft tissuestem cellstheranosticstongue papillatreatment optimization
项目摘要
PROJECT ABSTRACT
Oral biofilm-related infections remain a persistent and costly clinical problem. Existing treatments are unable to
simultaneously kill and physically disrupt biofilms and require manual biofilm removal procedures that are
cumbersome with reduced efficacy in difficult to reach areas such as endodontic canal systems. Furthermore,
options for sample retrieval for diagnostics during clinical procedures are limited. Efficacious, automated
technologies capable of precisely targeting complex anatomical areas are needed to retrieve samples, kill and
remove biofilms, and deliver drugs on site. We propose a novel approach combining nanotechnology and
robotics to develop the first automated system for targeted disinfection, removal, and sampling of endodontic
biofilms. We have designed small-scale robots using catalytic nanoparticles as building blocks that display
tether-free controlled motion with multifunctionality. Our approach utilizes iron oxide nanoparticles (IONPs) with
dual catalytic-magnetic properties that (i) generate bactericidal and biofilm degrading reactive molecules in situ,
and (ii) remove the disrupted biofilm via magnetic-field driven robotic assemblies termed Catalytic Antibiofilm
Robots (CARs). Preliminary data demonstrate that CARs locally remove and collect biofilms with high precision
and efficacy in comparison to conventional treatment, including confined endodontic spaces. By tuning the
magneto-catalytic properties and control of the CARs systems, we will develop robotic device
prototypes that fit the oral cavity for simultaneous endodontic biofilm treatment, removal and sample
retrieval. We propose to further improve IONP-made robots coupled with a clinical electromagnetic controller
to develop two CARs-based oral biodevice platforms. (Aim 1) CAR1s, formed from aggregated IONP, will be
used for catalytic bacterial killing, biofilm treatment, and sample retrieval from root canals for diagnostic analysis.
We will identify key parameters for CAR1s improvement, assessing magnetic control, bioactivity and
visualization/tracking. CAR1s will be evaluated for targeting difficult-to-reach areas, such as C-shaped/curved
canals and isthmus, as well as treating and retrieving biofilms. We will characterize and improve CAR1 control
first using 3D-printed tooth replicas with diverse canal morphologies to improve movement and controllability,
followed by testing our system using ex vivo extracted tooth/typodont and pig jaw models. (Aim 2) CAR2s will
be fabricated by 3D micromolding functional polymers with embedded IONPs for biofilm disruption, retrieval,
and drug delivery at the apical region. We will optimize magnetic control and tracking, antibiofilm activity and
triggered cargo delivery, testing efficacy to remove and retrieve biofilms. We will assess bioactivity using mixed-
species biofilms and maneuverability to the apical region of the root canal recapitulated in 3D-printed teeth and
ex vivo models, while rigorously evaluating the robotic device in geometries suited to the oral cavity with
comparisons against conventional treatment. We expect the outcomes of the proposed studies will lead to the
first robotic biodevice system developed for automated biofilm theranostics for applications in dental medicine.
项目摘要
口腔生物膜相关的感染仍然是一个持续的和昂贵的临床问题。现有的治疗方法无法
同时杀死和物理破坏生物膜,并需要手动生物膜去除程序,
在诸如牙髓管系统的难以到达的区域中麻烦且功效降低。此外,委员会认为,
在临床程序期间用于诊断的样本取回的选择是有限的。高效、自动化
需要能够精确靶向复杂解剖区域的技术来取回样本、杀死
去除生物膜,并在现场给药我们提出了一种结合纳米技术和
机器人技术开发第一个自动化系统,用于有针对性的消毒,去除和根管采样
生物膜我们已经设计了小型机器人,使用催化纳米颗粒作为构建模块,
具有多功能的无系绳控制运动。我们的方法利用氧化铁纳米颗粒(IONP),
双重催化-磁性性质,(i)原位产生杀菌和生物膜降解反应分子,
和(ii)通过被称为催化抗生物膜的磁场驱动的机器人组件去除被破坏的生物膜
机器人(汽车)。初步数据表明,汽车以高精度局部去除和收集生物膜
和有效性,包括封闭的牙髓间隙。通过调谐
磁催化性能和控制的汽车系统,我们将开发机器人设备
适合口腔同时进行牙髓生物膜处理、去除和取样的原型
检索我们建议进一步改进IONP制造的机器人与临床电磁控制器相结合
开发两个基于CAR的口腔生物设备平台。(Aim 1)由聚集的IONP形成的CAR 1将被
用于催化细菌杀灭、生物膜处理和从根管中取出样本进行诊断分析。
我们将确定CAR 1 s改进的关键参数,评估磁控制,生物活性和
可视化/跟踪。将评价CAR 1靶向难以到达的区域,如C形/弯曲
运河和峡部,以及处理和回收生物膜。我们将表征和改善CAR 1控制
首先使用具有不同根管形态的3D打印牙齿复制品来改善运动和可控性,
然后使用离体提取的牙齿/印齿和猪颌模型测试我们的系统。(Aim(2)CAR 2将
通过3D微成型功能聚合物与嵌入的IONP制造,用于生物膜破坏,恢复,
以及在顶端区域的药物递送。我们将优化磁控制和跟踪,磁膜活动,
触发货物运送,测试去除和回收生物膜的功效。我们将使用混合-
3D打印牙齿中重现的根管根尖区的物种生物膜和可操作性,
离体模型,同时严格评估适合口腔的几何形状的机器人装置,
与常规治疗的比较。我们预计拟议研究的结果将导致
第一个机器人生物设备系统,用于牙科医学中的自动生物膜治疗诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyun Koo其他文献
Hyun Koo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyun Koo', 18)}}的其他基金
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441517 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Treatment
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10427076 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10270570 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441630 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656236 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10414192 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656244 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
10493429 - 财政年份:2016
- 资助金额:
$ 63.21万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
9237531 - 财政年份:2016
- 资助金额:
$ 63.21万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
10020562 - 财政年份:2016
- 资助金额:
$ 63.21万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 63.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 63.21万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 63.21万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 63.21万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 63.21万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 63.21万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 63.21万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 63.21万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 63.21万 - 项目类别:
Standard Grant