Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
基本信息
- 批准号:10020562
- 负责人:
- 金额:$ 4.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-09 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcidsAffectAnti-Bacterial AgentsApatitesArchitectureBacteriaBiologicalCaries preventionCatalysisCell LineCell SurvivalCellsCessation of lifeChemicalsChlorhexidineClinicalConfocal MicroscopyDental EnamelDental cariesDevelopmentDextransDisease modelEffectivenessEnsureEvaluationExhibitsExpenditureExposure toExtracellular MatrixFaceFluoridesFormulationFree RadicalsGenerationsGingivaGoalsGoldHardnessHealthcareHigh PrevalenceHydrogen PeroxideIn SituIn VitroInfectionIronLeadLesionLocal Anti-Infective AgentsMechanicsMedical DeviceMetalsMicrobeMicrobial BiofilmsMineralsModalityModelingMouth DiseasesMucous MembraneOralOral healthOral mucous membrane structureOrganOutcomePeroxidasesPharmaceutical PreparationsPhysiologicalPreventionPreventiveProcessProductionPropertyRodentRodent ModelSaltsSeverity of illnessStructureSystemTestingTherapeuticTimeTissuesTopical applicationTreatment ProtocolsVirulentWorkanticariesantimicrobialantimicrobial drugbasebiomaterial compatibilitybiophysical techniquescalcium phosphatecariogenic bacteriaclinical efficacyclinical translationclinically relevantcohesioncostcytotoxiccytotoxicitydemineralizationdental biofilmdrug efficacyeffective therapyefficacy studyfascinateimprovedin vivoin vivo evaluationiron oxide nanoparticlemanganese chloridemicroCTnanomaterialsnanoparticlenovel strategiespreventproduct developmentsoft tissuespatiotemporaltechnology developmenttime use
项目摘要
Despite the high prevalence of biofilm-related oral diseases such as dental caries, there are no clinically
effective therapies to disrupt virulent biofilms, resulting in >$40 billion expenditures annually in the US.
Effective control of cariogenic biofilms is notoriously challenging because the bacteria are enmeshed in a
protective extracellular matrix rich in exopolysaccharides (EPS). Furthermore, EPS-enmeshed bacteria create
highly acidic microenvironments that promote acid-dissolution of tooth enamel, leading to the onset of dental
caries. Current antimicrobial agents are incapable of disrupting the EPS matrix or affecting the physico-
chemical aspects of caries and often fail to efficiently kill the microbes within biofilms, resulting in limited
efficacy in vivo. To overcome these remarkable hurdles, we have developed an exciting therapeutic strategy
using biocompatible iron oxide nanoparticles (IO-NP) with catalytic activity and pH-responsive properties that
display both anti-biofilm and anti-caries actions. IO-NP exhibit peroxidase-like activity at acidic pH values that
rapidly activates hydrogen peroxide (H2O2) in situ to simultaneously degrade the protective biofilm EPS-matrix
and kill embedded bacteria with exceptional efficacy (>5-log reduction of cell viability) in 5 minutes. Moreover,
IO-NP also reduce apatite demineralization in acidic conditions. We hypothesize that IO-NP synergizes with
H2O2 to amplify anti-biofilm effects and prevent the onset of dental caries in vivo via nanocatalysis and
enhanced in situ production of antibacterial, EPS-degrading and demineralization-blocking agents at acidic pH.
The significance of this work is to develop a feasible and superior anti-biofilm and caries preventive approach
compared to current chemical modalities. To test our hypothesis, we will optimize the efficacy of IO-NP/H2O2 to
further improve anti-biofilm and demineralizing-blocking activities (Aim 1). We will enhance the catalytic activity
of IO-NP by inclusion of specific metal salts into the nanoparticles, and explore the effects of various dextran-
based coatings to increase IO-NP localization within biofilm structure. Furthermore, we will incorporate
calcium-phosphate into IO-NP to enhance its effects on demineralization. Then, we will evaluate the efficacy of
enhanced IO-NP/H2O2 for biofilm control in vitro using a mixed-species, cariogenic biofilm model (Aim 2). We
will further elucidate the biological actions of IO-NP/H2O2 using time-lapsed confocal and biophysical methods
to examine spatiotemporal degradation of EPS-matrix, bacterial killing and cohesiveness within intact biofilms.
The effects on enamel demineralization will be assessed using micro-hardness and micro-CT. In Aim 3, we will
evaluate the biocompatibility and efficacy of the developed IO-NP/H2O2 therapy in hindering cariogenic biofilms
and the onset of carious lesions in vivo using a rodent caries model with a clinically-relevant topical treatment
regimen. Successful completion of these aims will provide a framework for further formulation development
and clinical efficacy studies. Importantly, IO-NP can be synthesized with low cost at large scale while H2O2 is
readily available, which could lead to a feasible new anti-biofilm/anti-caries therapeutic platform for topical use.
尽管生物膜相关的口腔疾病如龋齿的患病率很高,但临床上没有
破坏有毒生物膜的有效疗法,在美国每年产生超过400亿美元的支出。
众所周知,有效控制致龋生物膜具有挑战性,因为细菌陷入了一种
富含胞外多糖(EPS)的保护性细胞外基质。此外,EPS-缠结的细菌产生
高度酸性的微环境,促进牙釉质的酸溶解,导致牙本质损害的发生。
龋齿目前的抗微生物剂不能破坏EPS基质或影响其物理性质。
化学方面的龋齿,往往不能有效地杀死微生物内的生物膜,导致有限的
体内功效为了克服这些显著的障碍,我们开发了一种令人兴奋的治疗策略
使用具有催化活性和pH响应特性的生物相容性氧化铁纳米颗粒(IO-NP),
显示抗生物膜和抗龋齿作用。IO-NP在酸性pH值下表现出过氧化物酶样活性,
原位快速活化过氧化氢(H2 O2),同时降解保护性生物膜EPS基质
并在5分钟内以优异的功效(细胞存活率的对数减少>5)杀死包埋的细菌。此外,委员会认为,
IO-NP还在酸性条件下减少磷灰石脱矿。我们假设IO-NP与
H2 O2通过纳米催化作用增强抗生物膜效应并预防体内龋齿的发生,
在酸性pH下增强的抗菌剂、EPS降解剂和脱矿物质阻断剂的原位产生。
本工作的意义在于开发一种可行的、上级的抗生物膜和防龋方法
与目前的化学品模式相比。为了验证我们的假设,我们将优化IO-NP/H2 O2的功效,
进一步提高抗生物膜和脱矿物质阻断活性(目的1)。我们将提高催化活性
的IO-NP的纳米粒子,并探讨各种葡聚糖的影响,
基于涂层以增加IO-NP在生物膜结构内的定位。此外,我们还将
磷酸钙转化为IO-NP,以增强其对脱矿作用。然后,我们将评估
增强的IO-NP/H2 O2用于使用混合物种的致龋生物膜模型的体外生物膜控制(目的2)。我们
将使用时间推移共聚焦和生物物理方法进一步阐明IO-NP/H2 O2的生物学作用
以检查EPS-基质的时空降解、细菌杀灭和完整生物膜内的内聚性。
将使用显微硬度和显微CT评估对釉质脱矿的影响。在目标3中,我们
评价开发的IO-NP/H2 O2疗法在阻碍致龋生物膜方面的生物相容性和有效性
以及使用啮齿动物龋齿模型和临床相关的局部治疗在体内龋齿损伤的发生
方案.这些目标的成功实现将为进一步的制剂开发提供一个框架
临床疗效研究。重要的是,IO-NP可以以低成本大规模合成,而H2 O2是
容易获得,这可能导致用于局部使用的可行的新的抗生物膜/抗龋齿治疗平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyun Koo其他文献
Hyun Koo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyun Koo', 18)}}的其他基金
Small Scale Robotics for Automated Dental Biofilm Theranostics
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10658028 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441517 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Treatment
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10427076 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10270570 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441630 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656236 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10414192 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656244 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
10493429 - 财政年份:2016
- 资助金额:
$ 4.79万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
9237531 - 财政年份:2016
- 资助金额:
$ 4.79万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)