The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms

双相情感障碍的数字表型:利用技术识别双相情感障碍的症状

基本信息

项目摘要

Project Summary Bipolar disorder (BD) is associated with significant mortality and morbidity. It typically begins in adolescence or early adulthood, an important developmental period during which higher education, first jobs, and relationships are pursued. Recurrent mood episodes during this period can have a devastating impact on a young person's ability to achieve a high quality of life as an adult. A method by which to predict the onset of mood symptoms in adolescence would create an opportunity to intervene and reduce exposure to the harmful effects of recurrent episodes. A new approach – digital phenotyping – may make this possible. Digital phenotyping is defined as the “moment-by-moment quantification of the human phenotype in situ” using data collected from smartphone sensors (accelerometer, texts, calls, GPS). Digital phenotyping has been used to identify mood changes and potential signs of relapse in adults with BD, but has not yet been applied to adolescents. We will use Beiwe, a digital phenotyping application for iOS and Android phones, to collect digital phenotypes from participants (aged 14-19) over 18-months (N=120; n=70 with BD [I, II, Other Specified], n=50 typically-developing). Over the follow-up period, participants will complete biweekly mood assessments, and both participants and caregivers will be interviewed monthly to track changes in mood/behavior. This will allow the phone sensor data collected with Beiwe to be closely linked to symptom changes. The specific aims of this project are (1) to characterize the digital phenotype of BD symptoms in adolescents, (2) to describe differences in the digital phenotypes of the BD and typically developing groups, and (3) to develop a model for predicting mood symptoms prospectively. The proposed study is consistent with all four NIMH strategic objectives for the future of mental health research. This K23 Award will provide Anna Van Meter, PhD with the necessary training and mentorship to (1) gain proficiency in computational psychiatry by learning to analyze longitudinal data using statistical and machine learning techniques, (2) build expertise in patient-oriented translational research by designing and conducting a longitudinal study with youth participants; (3) learn to employ state-of-the-art mobile technology to personalize assessment and intervention using patient data. To accomplish these training goals, Dr. Van Meter has organized an outstanding mentorship team (Anil Malhotra, MD, Jukka-Pekka Onnela, DSc, John Kane, MD, Christoph Correll, MD, and Deborah Estrin, PhD), with expertise in patient-oriented research, technology-based mental health research, computational psychiatry, bipolar disorder in youth, and computer science. The proposed study will be the first to describe the digital phenotype of BD in adolescents, a population at great risk for the onset of BD as well as the damaging effects of repeated episodes. The completion of the proposed K23 Mentored Career Award will support an innovative program of patient-oriented research, and will provide Dr. Van Meter with the skills necessary to become an independent investigator pursuing novel technological solutions to improve patients' quality of life.
项目摘要 双相情感障碍(BD)与显著的死亡率和发病率有关。它通常开始于青春期或 成年早期,这是一个重要的发展时期,在这段时期里,高等教育、第一份工作和人际关系 都在追捕。在此期间反复出现的情绪发作可能会对年轻人的 作为成年人实现高质量生活的能力。一种预测心境症状发生时间的方法 青春期将创造机会进行干预,减少接触反复发作的有害影响。 剧集。一种新的方法--数字表型--可能使这成为可能。数字表型的定义是 利用智能手机采集的数据对人的表型进行“现场逐点量化” 传感器(加速计、短信、电话、GPS)。数字表型已被用来识别情绪变化和 在患有BD的成年人中有潜在的复发迹象,但尚未应用于青少年。我们将使用北威,一个 用于iOS和Android手机的数字表型应用程序,用于收集参与者的数字表型 (14-19岁)18个月以上(N=120;n=70伴BD[I,II,其他规定],n=50典型发展)。完毕 在随访期,参与者将完成每两周一次的情绪评估,参与者和 照顾者将每月接受采访,以跟踪情绪/行为的变化。这将允许电话传感器 与贝威一起收集的数据将与症状变化密切相关。该项目的具体目标是:(1) 描述青少年BD症状的数字表型,(2)描述数字表型的差异 BD的表型和典型的发育群体,以及(3)开发一个预测情绪的模型 前瞻的症状。拟议的研究与NIMH未来的所有四个战略目标一致 心理健康研究方面的专家。这项K23奖将为安娜·范·米特博士提供必要的培训和 指导:(1)通过学习分析纵向数据,精通计算精神病学。 统计和机器学习技术,(2)通过以下方式在面向患者的翻译研究中积累专业知识 设计并与青年参与者一起进行纵向研究;(3)学习使用最先进的技术 使用患者数据进行个性化评估和干预的移动技术。为了完成这些培训 Van Meter博士组织了一支杰出的导师团队(Anil Malhotra,医学博士,Jukka-Pekka Onnela, DSC、John Kane医学博士、Christoph Correll医学博士和Deborah Estrin博士),具有以患者为导向的专业知识 研究,以技术为基础的精神健康研究,计算精神病学,青年双相情感障碍,以及 计算机科学。这项拟议的研究将首次描述青少年BD的数字表型, BD发病风险很大的人群以及反复发作的破坏性影响。这个 完成拟议的K23指导职业奖将支持一个以患者为导向的创新计划 研究,并将为Van Meter博士提供成为独立调查员所需的技能 寻求新的技术解决方案,提高患者的生活质量。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinician Perspectives on Using Computational Mental Health Insights From Patients' Social Media Activities: Design and Qualitative Evaluation of a Prototype.
  • DOI:
    10.2196/25455
  • 发表时间:
    2021-11-16
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yoo DW;Ernala SK;Saket B;Weir D;Arenare E;Ali AF;Van Meter AR;Birnbaum ML;Abowd GD;De Choudhury M
  • 通讯作者:
    De Choudhury M
The Impact of the COVID-19 Pandemic on Adolescents: An Opportunity to Build Resilient Systems.
COVID-19 大流行对青少年的影响:构建弹性系统的机会。
Pramipexole to Improve Cognition in Bipolar Disorder: A Randomized Controlled Trial.
  • DOI:
    10.1097/jcp.0000000000001407
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Van Meter AR;Perez-Rodriguez MM;Braga RJ;Shanahan M;Hanna L;Malhotra AK;Burdick KE
  • 通讯作者:
    Burdick KE
The stability and persistence of symptoms in childhood-onset ADHD.
儿童期多动症症状的稳定性和持续性。
  • DOI:
    10.1007/s00787-023-02235-3
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    VanMeter,AnnaR;Sibley,MargaretH;Vandana,Pankhuree;Birmaher,Boris;Fristad,MaryA;Horwitz,Sarah;Youngstrom,EricA;Findling,RobertL;Arnold,LEugene
  • 通讯作者:
    Arnold,LEugene
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Robinson Van Meter其他文献

Anna Robinson Van Meter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Robinson Van Meter', 18)}}的其他基金

The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
  • 批准号:
    10582951
  • 财政年份:
    2022
  • 资助金额:
    $ 19.55万
  • 项目类别:
The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
  • 批准号:
    10471803
  • 财政年份:
    2022
  • 资助金额:
    $ 19.55万
  • 项目类别:
The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
  • 批准号:
    9806296
  • 财政年份:
    2019
  • 资助金额:
    $ 19.55万
  • 项目类别:
The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
  • 批准号:
    10214506
  • 财政年份:
    2019
  • 资助金额:
    $ 19.55万
  • 项目类别:

相似海外基金

Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 19.55万
  • 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
  • 批准号:
    ES/Z502601/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.55万
  • 项目类别:
    Fellowship
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
  • 批准号:
    23K02900
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
  • 批准号:
    2300937
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
    Continuing Grant
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
  • 批准号:
    10785373
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
  • 批准号:
    10733406
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
  • 批准号:
    10676403
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
  • 批准号:
    10585031
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
  • 批准号:
    EP/X026825/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
    Research Grant
Harnessing digital data to study 21st-century adolescence
利用数字数据研究 21 世纪青春期
  • 批准号:
    MR/X028801/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了