Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients

住院患者药物滥用识别的数据驱动策略

基本信息

  • 批准号:
    10671519
  • 负责人:
  • 金额:
    $ 71.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The rate of substance use-related hospital visits in the US continues to increase, and now outpaces visits for heart disease and respiratory failure. The prevalence of substance misuse (nonmedical use of opioids and/or benzodiazepines, illicit drugs, and/or alcohol) in hospitalized patients is estimated to be 15%-25% and far exceeds the prevalence in the general population. With over 35 million hospitalized patients per year, tens of millions of patients are not screened for substance misuse during their stay. Despite the recommendation for self-report questionnaires (single-question universal screens, Alcohol Use Disorders Identification Test [AUDIT], Drug Abuse Screening Tool [DAST]), screening rates remains low in hospitals. Current screening methods are resource-intensive, so a comprehensive and automated approach to substance misuse screening that will augment current clinical workflow would therefore be of great utility. In the advent of Meaningful Use in the electronic health record (EHR), efficiency for substance misuse detection may be improved by leveraging data collected during usual care. Documentation of substance use is common and occurs in 97% of provider admission notes, but their free text format renders them difficult to mine and analyze. Natural Language Processing (NLP) and machine learning are subfields of artificial intelligence (AI) that provide a solution to analyze text data in the EHR to identify substance misuse. Modern NLP has fused with machine learning, another sub-field of AI focused on learning from data. In particular, the most powerful NLP methods rely on supervised learning, a type of machine learning that takes advantage of current reference standards to make predictions about unseen cases In our earlier version of an NLP and machine learning tool, our opioid and alcohol misuse classifiers successfully used data from clinical notes collected in the first 24 hours of hospital admission to reach a sensitivity and specificity above 75% for detecting alcohol or opioid misuse. We will improve the performance of our baseline, individual NLP single-substance classifiers for alcohol and opioid misuse by implementing multi-label and multi-task machine learning methods. These methods will take advantage of information shared across different types of substance misuse and better capture the state of a patient within a single model. The resulting classifier will be capable of jointly inferring all types of substance misuse (alcohol misuse, opioid misuse, and non-opioid illicit misuse) including polysubstance use, and cater to each individual patient’s substance use treatment needs. We aim to train and test our substance misuse classifiers at Rush in a retrospective dataset of over 35,000 hospitalizations that have been manually screened with the universal screen, AUDIT, and DAST. The top performing classifier will then be tested prospectively to: (1) externally validate its screening performance in a hospital without established screening; and (2) test its effectiveness against usual care at a hospital with questionnaire-based substance misuse screening. We hypothesize that a single-model NLP substance misuse classifier will provide a standardized, interoperable, and accurate approach for universal screening in hospitalized patients and guiding interventions.
项目总结

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Response to Fitzgerald & Barenholtz: There is still much work to be done for digital classifiers.
对菲茨杰拉德的回应
  • DOI:
    10.1111/add.15788
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karnik,NiranjanS;Thompson,HaleM;Afshar,Majid
  • 通讯作者:
    Afshar,Majid
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Majid Afshar其他文献

Majid Afshar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Majid Afshar', 18)}}的其他基金

Building a Substance Use Data Commons for Public Health Informatics
为公共卫生信息学建立药物使用数据共享区
  • 批准号:
    10411763
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients
住院患者药物滥用识别的数据驱动策略
  • 批准号:
    10026785
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
CHANGE OF GRANTEE INSTITUTION 1 K23 AA024503 Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
受资助者机构变更 1 K23 AA024503 酒精、烧伤和急性呼吸窘迫综合征
  • 批准号:
    10204442
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients
住院患者药物滥用识别的数据驱动策略
  • 批准号:
    10265504
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients
住院患者药物滥用识别的数据驱动策略
  • 批准号:
    10455043
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
酒精、烧伤和急性呼吸窘迫综合征
  • 批准号:
    9543938
  • 财政年份:
    2016
  • 资助金额:
    $ 71.66万
  • 项目类别:
Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
酒精、烧伤和急性呼吸窘迫综合征
  • 批准号:
    9338106
  • 财政年份:
    2016
  • 资助金额:
    $ 71.66万
  • 项目类别:
Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
酒精、烧伤和急性呼吸窘迫综合征
  • 批准号:
    9765117
  • 财政年份:
    2016
  • 资助金额:
    $ 71.66万
  • 项目类别:
Proinflammatory Effects Of Acute Alcohol Ingestion in Humans
人类急性酒精摄入的促炎作用
  • 批准号:
    8594543
  • 财政年份:
    2013
  • 资助金额:
    $ 71.66万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了