Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients
住院患者药物滥用识别的数据驱动策略
基本信息
- 批准号:10265504
- 负责人:
- 金额:$ 68.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Admission activityAdoptedAdultAlcoholsArtificial IntelligenceBenzodiazepinesCaringClinicalClinical DataComputing MethodologiesConsultCosts and BenefitsDataData SetDetectionDevelopmentDocumentationEffectivenessElectronic Health RecordFelis catusGeneral PopulationGoalsHealth Care SectorHealth systemHeart DiseasesHospitalizationHospitalsHourIllicit DrugsIndividualInpatientsIntakeInterruptionInterventionInterviewerLabelLearningLightMachine LearningManualsMethodsModelingModernizationNatural Language ProcessingPatient Self-ReportPatientsPerformancePrevalencePrimary Health CareProviderPublishingQuestionnairesRecommendationReference StandardsResearchResourcesRespiratory FailureRiskRisk FactorsScreening procedureSemanticsSensitivity and SpecificitySeriesSocial WorkSourceStandardizationSubstance Abuse DetectionTestingTextTimeTrainingTrustValidationVisitaddictionalcohol misusealcohol use disorderbaseclinical decision supportcohortcomparison interventiondesigneffectiveness evaluationimprovedindividual patientinteroperabilitymachine learning methodmultitasknon-opioid analgesicnovelopioid misusepolysubstance useprospectiveprospective testresponseroutine carescreeningscreening programsubstance misusesubstance usesubstance use treatmentsupervised learningsupport toolstooltreatment as usualtrendunstructured data
项目摘要
PROJECT SUMMARY
The rate of substance use-related hospital visits in the US continues to increase, and now outpaces
visits for heart disease and respiratory failure. The prevalence of substance misuse (nonmedical use of opioids
and/or benzodiazepines, illicit drugs, and/or alcohol) in hospitalized patients is estimated to be 15%-25% and
far exceeds the prevalence in the general population. With over 35 million hospitalized patients per year, tens
of millions of patients are not screened for substance misuse during their stay. Despite the recommendation for
self-report questionnaires (single-question universal screens, Alcohol Use Disorders Identification Test
[AUDIT], Drug Abuse Screening Tool [DAST]), screening rates remains low in hospitals. Current screening
methods are resource-intensive, so a comprehensive and automated approach to substance misuse screening
that will augment current clinical workflow would therefore be of great utility.
In the advent of Meaningful Use in the electronic health record (EHR), efficiency for substance misuse
detection may be improved by leveraging data collected during usual care. Documentation of substance use is
common and occurs in 97% of provider admission notes, but their free text format renders them difficult to
mine and analyze. Natural Language Processing (NLP) and machine learning are subfields of artificial
intelligence (AI) that provide a solution to analyze text data in the EHR to identify substance misuse. Modern
NLP has fused with machine learning, another sub-field of AI focused on learning from data. In particular, the
most powerful NLP methods rely on supervised learning, a type of machine learning that takes advantage of
current reference standards to make predictions about unseen cases
In our earlier version of an NLP and machine learning tool, our opioid and alcohol misuse classifiers
successfully used data from clinical notes collected in the first 24 hours of hospital admission to reach a
sensitivity and specificity above 75% for detecting alcohol or opioid misuse. We will improve the performance
of our baseline, individual NLP single-substance classifiers for alcohol and opioid misuse by implementing
multi-label and multi-task machine learning methods. These methods will take advantage of information shared
across different types of substance misuse and better capture the state of a patient within a single model. The
resulting classifier will be capable of jointly inferring all types of substance misuse (alcohol misuse, opioid
misuse, and non-opioid illicit misuse) including polysubstance use, and cater to each individual patient’s
substance use treatment needs.
We aim to train and test our substance misuse classifiers at Rush in a retrospective dataset of over
35,000 hospitalizations that have been manually screened with the universal screen, AUDIT, and DAST. The
top performing classifier will then be tested prospectively to: (1) externally validate its screening performance in
a hospital without established screening; and (2) test its effectiveness against usual care at a hospital with
questionnaire-based substance misuse screening. We hypothesize that a single-model NLP substance
misuse classifier will provide a standardized, interoperable, and accurate approach for universal screening in
hospitalized patients and guiding interventions.
项目摘要
在美国,与药物使用相关的医院就诊率继续增加,现在已经超过了
心脏病和呼吸衰竭的病人药物滥用的流行率(阿片类药物的非医疗使用
和/或苯二氮卓类药物、违禁药物和/或酒精)的比例估计为15%-25%,
远远超过了普通人群的患病率。每年有超过3500万住院患者,
数以百万计的病人在住院期间没有接受药物滥用筛查。尽管建议
自我报告问卷(单一问题通用屏幕、酒精使用障碍识别测试
[AUDIT],药物滥用筛查工具[DAST]),医院的筛查率仍然很低。目前的筛选
方法是资源密集型的,因此一种全面的自动化药物滥用筛查方法
这将增强当前临床工作流程,因此将具有很大的实用性。
随着电子健康记录(EHR)中有意义使用的出现,
可以通过利用在常规护理期间收集的数据来改进检测。物质使用的文件是
常见,出现在97%的供应商录取通知书中,但其自由文本格式使其难以
挖掘和分析自然语言处理(NLP)和机器学习是人工智能的子领域。
智能(AI)提供了一种解决方案,用于分析EHR中的文本数据,以识别物质滥用。现代
NLP与机器学习融合,机器学习是人工智能的另一个子领域,专注于从数据中学习。特别是
大多数强大的NLP方法依赖于监督学习,这是一种利用
目前的参考标准,以预测未见过的情况
在我们早期版本的NLP和机器学习工具中,我们的阿片类和酒精滥用分类器
成功地使用了在入院的前24小时内收集的临床记录数据,
检测酒精或阿片类药物滥用的灵敏度和特异性高于75%。我们将改进性能
通过实施我们的基线、针对酒精和阿片类药物滥用的个人NLP单一物质分类器
多标签和多任务机器学习方法。这些方法将利用共享的信息
跨不同类型的物质滥用,并在单个模型中更好地捕捉患者的状态。的
所得到的分类器将能够联合推断所有类型的物质滥用(酒精滥用、阿片类药物
滥用和非阿片类药物非法滥用),包括多种物质的使用,并满足每个患者的
物质使用治疗需要。
我们的目标是在Rush的回顾性数据集中训练和测试我们的物质滥用分类器,
35,000例住院患者已通过通用筛查、AUDIT和DAST进行手动筛查。的
然后将前瞻性地测试表现最好的分类器,以:(1)在外部验证其筛选性能,
没有建立筛选的医院;和(2)测试其有效性,与医院的常规护理相比,
基于汞的物质滥用筛查。我们假设一种单一模型的NLP物质
误用分类器将提供一个标准化的,可互操作的和准确的方法,用于通用筛选,
住院患者和指导干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Majid Afshar其他文献
Majid Afshar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Majid Afshar', 18)}}的其他基金
Building a Substance Use Data Commons for Public Health Informatics
为公共卫生信息学建立药物使用数据共享区
- 批准号:
10411763 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients
住院患者药物滥用识别的数据驱动策略
- 批准号:
10026785 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
CHANGE OF GRANTEE INSTITUTION 1 K23 AA024503 Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
受资助者机构变更 1 K23 AA024503 酒精、烧伤和急性呼吸窘迫综合征
- 批准号:
10204442 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients
住院患者药物滥用识别的数据驱动策略
- 批准号:
10455043 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Data Driven Strategies for Substance Misuse Identification in Hospitalized Patients
住院患者药物滥用识别的数据驱动策略
- 批准号:
10671519 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
酒精、烧伤和急性呼吸窘迫综合征
- 批准号:
9543938 - 财政年份:2016
- 资助金额:
$ 68.83万 - 项目类别:
Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
酒精、烧伤和急性呼吸窘迫综合征
- 批准号:
9338106 - 财政年份:2016
- 资助金额:
$ 68.83万 - 项目类别:
Alcohol, Burn-Injury, and Acute Respiratory Distress Syndrome
酒精、烧伤和急性呼吸窘迫综合征
- 批准号:
9765117 - 财政年份:2016
- 资助金额:
$ 68.83万 - 项目类别:
Proinflammatory Effects Of Acute Alcohol Ingestion in Humans
人类急性酒精摄入的促炎作用
- 批准号:
8594543 - 财政年份:2013
- 资助金额:
$ 68.83万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 68.83万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 68.83万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 68.83万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 68.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 68.83万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 68.83万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 68.83万 - 项目类别:
Research Fellowships














{{item.name}}会员




