Evolutionary dynamics of dense, spatially structured, and antagonistic microbial populations
密集、空间结构和对抗性微生物种群的进化动力学
基本信息
- 批准号:10684081
- 负责人:
- 金额:$ 38.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgarAntibiosisBiologicalCaenorhabditis elegansCell CommunicationCell ShapeCellsChemicalsCommunitiesDependenceEngineeringEnvironmentEventEvolutionFeedbackGene FrequencyGenetic DriftGenotypeHealthHumanHuman MicrobiomeInfectionInfection preventionInvadedLaboratoriesLiquid substanceMechanicsMediatingMicrobeMutationNatural SelectionsNematodaPenetrationPopulationReplacement TherapyResistanceRodShapesSkinStructureSurfaceToxinTranslatingWorkYeastsantagonistdesignexperimental studyfitnesshost microbiomeinterestmathematical modelmicrobialmicrobial communitymicrobiomemicroorganism interactionpathogenpressuresoft tissuesynthetic biology
项目摘要
Abstract
Microbes in host microbiomes, human infections and the natural environment often live in spatially
structured aggregates and interact antagonistically with each other. Toxin-mediated antagonistic
interactions are widespread in the gut, skin, and other human microbiomes, and protect these
communities against external invasion. Recent results suggest that spatial structure can strongly
affect the evolutionary dynamics of microbial populations, and, in turn, microbial interactions can
feedback on the formation of spatial structure. For example, we found that mechanical interactions
among dividing cells in growing yeast colonies reduce the power of natural selection by reducing
the rates at which lower fitness strains go extinct and fitter ones expand in these populations.
Despite spatial structure and microbial interactions have a strong impact on the evolutionary
dynamics of microbes relevant for human health, most of what we know about microbial
evolutionary dynamics comes from experiments with well-mixed liquid cultures with limited
interactions among cells. To fill this gap, my group is interested in understanding quantitatively
how spatial structure, mechanics and biological interactions impact the adaptive evolutionary
dynamics of microbial populations. We approach this question via experimental evolution,
synthetic biology, and mathematical modeling. In preliminary experiments, we found that evolving
yeast colonies selecting for faster expansion on agar surfaces results in notable changes in cell
shape: cells evolved from an ellipsoidally shaped ancestor to being elongated and almost rod-
like, changing the way cells interact mechanically when growing and dividing. We hypothesize
that an elongated cell shape is advantageous for faster expansion because it reduces cell
packing, and that this adaptive change is associated with changes in the way genotypes cluster
in space leading to increased genetic drift, the temporal change in allele frequencies due to
chance events. Recently, we showed that a toxin-producing microbe can only invade a landscape
occupied by a weaker toxin-producer if its inoculum is larger than a critical size, and that adaptive
evolution can alter the dynamics of antagonism. We will experimentally investigate the
dependence of the critical inoculum size on the strength of the interaction, and we will study how
spatial structure controls the fate of mutations that confer resistance to the toxin produced by
either the invader or resident strain. Finally, we will investigate how antagonistic interactions
among microbes affect the dynamics of invasion in the gut of the nematode Caenorhabditis
elegans: these experiments will help us translate results obtained in simple laboratory settings to
the more complicated but more realistic dynamics of invasion of a host microbiome.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Giometto其他文献
Andrea Giometto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Cd(II)在NH2-Agar/PSS双网络水凝胶上的吸附行为及资源化工艺研究
- 批准号:51708204
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An ethnographic study on the utilization and allocation of sea resources among agar divers in Japan, Taiwan and Korea
日本、台湾、韩国琼脂潜水者海洋资源利用与配置的人种学研究
- 批准号:
19K13467 - 财政年份:2019
- 资助金额:
$ 38.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Edible optical systems made of agar
由琼脂制成的可食用光学系统
- 批准号:
18K19799 - 财政年份:2018
- 资助金额:
$ 38.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Agar-based gel-electrolytes for corrosion diagnostic
用于腐蚀诊断的琼脂基凝胶电解质
- 批准号:
330472124 - 财政年份:2017
- 资助金额:
$ 38.15万 - 项目类别:
Research Grants
Micro-Patterning of Agar Surface for Cultivation Control of Microbes
用于微生物培养控制的琼脂表面微图案化
- 批准号:
15K14703 - 财政年份:2015
- 资助金额:
$ 38.15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Elucidation of the mechanism that heterotrophic bacteria induce the growth of the cyanobacterial strain on agar media
阐明异养细菌诱导蓝藻菌株在琼脂培养基上生长的机制
- 批准号:
26650166 - 财政年份:2014
- 资助金额:
$ 38.15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The Production of Japanese Agar and Gelatin in Edo Period
江户时代日本琼脂和明胶的生产
- 批准号:
21520663 - 财政年份:2009
- 资助金额:
$ 38.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Organization of Novel Marine Bacterial Structures Involved in the Degradation of Agar
参与琼脂降解的新型海洋细菌结构的组织
- 批准号:
0109869 - 财政年份:2001
- 资助金额:
$ 38.15万 - 项目类别:
Continuing Grant
Swallowing Characteristics of Bolus of Agar Gels on the Swallowing Process
琼脂凝胶丸剂对吞咽过程的吞咽特性
- 批准号:
09680040 - 财政年份:1997
- 资助金额:
$ 38.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HIGH FREQUENCY FLUX CONTROL OF MAGNETIC AGAR USING PLANT MAGNETIC MATERIAL AND ITS APPLICATIONS
植物磁性材料对磁性琼脂的高频通量控制及其应用
- 批准号:
08555095 - 财政年份:1996
- 资助金额:
$ 38.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Raum-Zeit-Strukturen von Ca2+-Signalen in einem SR-Vesikel-Agar-System; Experimente und Modellierung
SR囊泡琼脂系统中Ca2信号的时空结构;
- 批准号:
5194244 - 财政年份:1995
- 资助金额:
$ 38.15万 - 项目类别:
Research Grants