Project 1

项目1

基本信息

  • 批准号:
    10700935
  • 负责人:
  • 金额:
    $ 55.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-16 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Abstract In glioblastoma (GBM), cancer cells break away from the tumor mass and infiltrate into adjacent brain tissue. Like other poor-prognosis cancers, GBM has been extensively analyzed by genome-wide transcriptomic analyses. This has led to the identification of 3-4 subtypes that span a spectrum of states from “Proneural” (PN) to “Mesenchymal” (MES). While the identification of subtypes is intriguing, it has yet to produce clinically- actionable mechanistic insight. In our unpublished work, we discovered key mechanical signatures of these two subtypes. Using our Sleeping Beauty (SB) immunocompetent genetically-induced mouse glioma model, we found that the oncogenic driver NRasG12V promotes a MES-like phenotype and the oncogenic driver PDGFβ promotes a PN-like phenotype. In addition, we found that NRas-driven tumors migrate fast and generate large traction forces, while PDGFβ-driven tumors migrate slowly and generate weaker traction forces, features we also observe with human cells in brain tissue. Thus, the two subtypes may each have their own distinct mechanical weaknesses that can be effectively targeted. Since brute force trial-and-error of possible targets is not feasible, we will manage complexity using the modeling approach that is widely used in engineering. As pointed out in the Overall section of this proposal, the mobility of the cancer cells and the antitumoral T cells are both critical determinants of tumor progression/regression, so we will apply our recently published “Cell Migration Simulator” (CMS1.0) to cancer and immune cell migration and use experimental microscopy measurements made in brain tissue to identify the model parameters for the two GBM subtypes. This will then allow us to identify key mechanical vulnerabilities that will be tested using digital multiplex T cell genome engineering (as described in Project 3) and will provide a computational platform for application to pancreatic cancer and immune cells (in Project 2). To simulate the multicellular migration, proliferation, and immune-mediated killing dynamics, we will apply our “Brownian Dynamics Tumor Simulator” (BDTS1.0) to predict the overall tumor dynamics of the NRas (MES) and PDGFβ (PN) tumors. Interestingly, like the human disease, the NRas (MES) tumors are immunologically ‘hot’, while the PDGFβ (PN) tumors are immunologically ‘cold’. Thus, the BDTS1.0, once developed for these two subtypes of brain tumors, will allow us to predict the effects of emergent immunotherapy concepts developed by our team, including CD200 peptide therapy and Peptide Alarm Therapy. By constraining the simulators with data obtained by live cell fluorescence microscopy, we will develop a multiscale computational model that provides mechanistic de-risking and optimization to maximize the physical proximity and encounter frequency between antitumoral T cells and cancer cells. Together the modeling and experiments will allow us to test our central hypothesis that T cell proximity to cancer cells is a major determinant of successful immunotherapy of solid tumors.
摘要 在胶质母细胞瘤(GBM)中,癌细胞脱离肿瘤块并浸润到邻近的脑组织中。 像其他预后不良的癌症一样,GBM已经通过全基因组转录组学进行了广泛的分析。 分析。这导致了3-4个亚型的识别,这些亚型跨越了“前神经”(PN)的状态谱。 间充质干细胞(MES)。虽然亚型的鉴定是有趣的,但它还没有产生临床- 可操作的机械洞察力在我们未发表的工作中,我们发现了这两个关键的机械特征, 亚型使用我们的睡美人(SB)免疫活性基因诱导的小鼠胶质瘤模型,我们 发现致癌驱动因子NRasG 12 V促进MES样表型,而致癌驱动因子PDGFβ 促进PN样表型。此外,我们发现NRAS驱动的肿瘤迁移速度快,并产生大量的肿瘤细胞。 牵引力,而PDGFβ驱动的肿瘤迁移缓慢,产生较弱的牵引力,我们还 用脑组织中的人类细胞进行观察。因此,这两种亚型可各自具有其自身不同的机械性质。 可以有效针对的弱点。由于对可能的目标进行强力试错是不可行的, 我们将使用工程中广泛使用的建模方法来管理复杂性。正如在《 总的来说,癌细胞和抗肿瘤T细胞的流动性都是至关重要的 肿瘤进展/消退的决定因素,所以我们将应用我们最近发表的“细胞迁移”, 模拟器”(CMS1.0)对癌症和免疫细胞迁移的研究,并使用实验显微镜进行测量 以确定两种GBM亚型的模型参数。这将使我们能够识别 将使用数字多路复用T细胞基因组工程(如所描述的)来测试关键的机械弱点 项目3中),并将提供一个应用于胰腺癌和免疫细胞的计算平台(在 项目2)。为了模拟多细胞迁移、增殖和免疫介导的杀伤动力学,我们将 应用我们的“布朗动力学肿瘤模拟器”(BDTS1.0)来预测肿瘤的整体动力学。 NRas(MES)和PDGFβ(PN)肿瘤。有趣的是,像人类疾病一样,NRAS(MES)肿瘤是 PDGFβ(PN)肿瘤在免疫学上是“热”的,而PDGFβ(PN)肿瘤在免疫学上是“冷”的。因此,BDTS 1.0一旦 为这两种亚型的脑肿瘤开发的,将使我们能够预测紧急免疫治疗的效果, 由我们的团队开发的概念,包括CD 200肽疗法和肽报警疗法。通过 通过活细胞荧光显微镜获得的数据约束的模拟器,我们将开发一个多尺度 提供机械去风险和优化以最大化物理接近度的计算模型 以及抗肿瘤T细胞和癌细胞之间的相遇频率。结合建模和实验 这将使我们能够测试我们的中心假设,即T细胞与癌细胞的接近性是癌症的主要决定因素。 实体瘤的成功免疫治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David J. Odde其他文献

Outstanding Papers in Cellular and Molecular Bioengineering from the 2011 Biomedical Engineering Society Annual Meeting
  • DOI:
    10.1007/s12195-012-0227-x
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    X. Edward Guo;David J. Odde
  • 通讯作者:
    David J. Odde
Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership
放射治疗与骨髓源性抑制细胞:打破它们的癌症伙伴关系
  • DOI:
    10.1016/j.ijrobp.2023.11.050
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Kyra M. Boorsma Bergerud;Matthew Berkseth;Drew M. Pardoll;Sudipto Ganguly;Lawrence R. Kleinberg;Jessica Lawrence;David J. Odde;David A. Largaespada;Stephanie A. Terezakis;Lindsey Sloan
  • 通讯作者:
    Lindsey Sloan
Outstanding Papers from the 2009 Biomedical Engineering Society (BMES) Annual Meeting
  • DOI:
    10.1007/s12195-009-0095-1
  • 发表时间:
    2009-11-18
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    David J. Odde;X. Edward Guo
  • 通讯作者:
    X. Edward Guo
Computational Modeling of Tubulin-Tubulin Lateral Interaction: Molecular Dynamics and Brownian Dynamics
  • DOI:
    10.1016/j.bpj.2017.11.2751
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Mahya Hemmat;David J. Odde
  • 通讯作者:
    David J. Odde
Cellular and Molecular Bioengineering: Editorial Perspective
  • DOI:
    10.1007/s12195-008-0013-y
  • 发表时间:
    2008-03-25
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    X. Edward Guo;David J. Odde
  • 通讯作者:
    David J. Odde

David J. Odde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David J. Odde', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10374451
  • 财政年份:
    2021
  • 资助金额:
    $ 55.27万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10538589
  • 财政年份:
    2021
  • 资助金额:
    $ 55.27万
  • 项目类别:
Research Testbed 2
研究试验台2
  • 批准号:
    10538599
  • 财政年份:
    2021
  • 资助金额:
    $ 55.27万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10270396
  • 财政年份:
    2021
  • 资助金额:
    $ 55.27万
  • 项目类别:
Project 1
项目1
  • 批准号:
    10270393
  • 财政年份:
    2021
  • 资助金额:
    $ 55.27万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10700945
  • 财政年份:
    2021
  • 资助金额:
    $ 55.27万
  • 项目类别:
Research Testbed 2
研究试验台2
  • 批准号:
    10374454
  • 财政年份:
    2021
  • 资助金额:
    $ 55.27万
  • 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
  • 批准号:
    9067235
  • 财政年份:
    2013
  • 资助金额:
    $ 55.27万
  • 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
  • 批准号:
    8847683
  • 财政年份:
    2013
  • 资助金额:
    $ 55.27万
  • 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
  • 批准号:
    9268425
  • 财政年份:
    2013
  • 资助金额:
    $ 55.27万
  • 项目类别:

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
  • 批准号:
    2342129
  • 财政年份:
    2024
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
  • 批准号:
    2330254
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
  • 批准号:
    23K17398
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
  • 批准号:
    2240506
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
  • 批准号:
    23K05776
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
  • 批准号:
    EP/X025454/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Research Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
  • 批准号:
    2322719
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
  • 批准号:
    2740295
  • 财政年份:
    2022
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了