Project 1
项目1
基本信息
- 批准号:10270393
- 负责人:
- 金额:$ 57.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Adult GlioblastomaAnisotropyApoptosisBrainBrain NeoplasmsCD 200Cancer PrognosisCellsCessation of lifeChemotaxisClinicalClinical TrialsComputer ModelsCytotoxic agentDataDevelopmentDiffuseEngineeringEnvironmentExclusion CriteriaFailureFlu virusFluorescence MicroscopyFrequenciesGenetic EngineeringGenetically Engineered MouseGenome engineeringGlioblastomaGliomaHumanImmuneImmune responseImmunizationImmunocompetentImmunological ModelsImmunologicsImmunosuppressionImmunotherapyIn VitroMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMechanicsMediatingMesenchymalMicroscopyModelingMusOncogenicOperative Surgical ProceduresOpticsOutcomePatientsPeptidesPharmaceutical PreparationsPhenotypePositioning AttributePrognosisProliferatingPublishingRadiationRiskSleeping BeautySliceSolid NeoplasmT-LymphocyteTestingTherapeuticTractionTranslatingTwo-Parameter ModelVaccinationVaccinesanti-tumor immune responsebrain tissuecancer cellcell killingcell motilitychemotherapyclinical riskclinically actionablecombinatorialcomputational platformcomputer frameworkconfocal imagingcytokinedigitalengineered T cellsexhaustionexperienceexperimental studygenome-wide analysishuman diseaseimmunoengineeringimmunotherapy trialsin vivoinnovationinsightmigrationmouse modelneoplasm immunotherapyneoplastic celloutcome predictionpatient stratificationreceptorsimulationstandard of caresuccesstooltranscriptomicstumortumor progressiontwo-photonunpublished works
项目摘要
Abstract
In glioblastoma (GBM), cancer cells break away from the tumor mass and infiltrate into adjacent brain tissue.
Like other poor-prognosis cancers, GBM has been extensively analyzed by genome-wide transcriptomic
analyses. This has led to the identification of 3-4 subtypes that span a spectrum of states from “Proneural” (PN)
to “Mesenchymal” (MES). While the identification of subtypes is intriguing, it has yet to produce clinically-
actionable mechanistic insight. In our unpublished work, we discovered key mechanical signatures of these two
subtypes. Using our Sleeping Beauty (SB) immunocompetent genetically-induced mouse glioma model, we
found that the oncogenic driver NRasG12V promotes a MES-like phenotype and the oncogenic driver PDGFβ
promotes a PN-like phenotype. In addition, we found that NRas-driven tumors migrate fast and generate large
traction forces, while PDGFβ-driven tumors migrate slowly and generate weaker traction forces, features we also
observe with human cells in brain tissue. Thus, the two subtypes may each have their own distinct mechanical
weaknesses that can be effectively targeted. Since brute force trial-and-error of possible targets is not feasible,
we will manage complexity using the modeling approach that is widely used in engineering. As pointed out in the
Overall section of this proposal, the mobility of the cancer cells and the antitumoral T cells are both critical
determinants of tumor progression/regression, so we will apply our recently published “Cell Migration
Simulator” (CMS1.0) to cancer and immune cell migration and use experimental microscopy measurements
made in brain tissue to identify the model parameters for the two GBM subtypes. This will then allow us to identify
key mechanical vulnerabilities that will be tested using digital multiplex T cell genome engineering (as described
in Project 3) and will provide a computational platform for application to pancreatic cancer and immune cells (in
Project 2). To simulate the multicellular migration, proliferation, and immune-mediated killing dynamics, we will
apply our “Brownian Dynamics Tumor Simulator” (BDTS1.0) to predict the overall tumor dynamics of the
NRas (MES) and PDGFβ (PN) tumors. Interestingly, like the human disease, the NRas (MES) tumors are
immunologically ‘hot’, while the PDGFβ (PN) tumors are immunologically ‘cold’. Thus, the BDTS1.0, once
developed for these two subtypes of brain tumors, will allow us to predict the effects of emergent immunotherapy
concepts developed by our team, including CD200 peptide therapy and Peptide Alarm Therapy. By
constraining the simulators with data obtained by live cell fluorescence microscopy, we will develop a multiscale
computational model that provides mechanistic de-risking and optimization to maximize the physical proximity
and encounter frequency between antitumoral T cells and cancer cells. Together the modeling and experiments
will allow us to test our central hypothesis that T cell proximity to cancer cells is a major determinant of
successful immunotherapy of solid tumors.
摘要
在胶质母细胞瘤(GBM)中,癌细胞从肿瘤块中分离出来,并渗入邻近的脑组织。
像其他预后不良的癌症一样,gbm已经通过全基因组转录进行了广泛的分析。
分析。这导致了3-4个亚型的识别,这些亚型跨越了“原神经性”(PN)的一系列状态。
至“间充质干细胞”(MES)。虽然亚型的鉴定很耐人寻味,但它尚未在临床上产生-
可操作的机械洞察力。在我们未发表的工作中,我们发现了这两个关键的机械特征
子类型。使用我们的睡美人(SB)免疫活性基因诱导的小鼠胶质瘤模型,我们
发现致癌驱动基因NRasG12V促进MES样表型,致癌驱动基因pDGFβ
促进PN样表型。此外,我们发现由NRAS驱动的肿瘤迁移速度很快,并产生了大量的
牵引力,虽然pdgfβ驱动的肿瘤迁移缓慢,产生的牵引力较弱,但我们还
观察脑组织中的人类细胞。因此,这两个子类型可能各自具有其不同的机械
可以有效地针对的弱点。由于对可能的目标进行暴力试错是不可行的,
我们将使用工程中广泛使用的建模方法来管理复杂性。正如在
总的来说,癌细胞和抗肿瘤T细胞的流动性都是至关重要的
肿瘤进展/退化的决定因素,因此我们将应用我们最近发表的《细胞迁移》
癌症和免疫细胞迁移的模拟器“(CMS1.0)和使用实验显微镜测量
在脑组织中制作,以确定两种GBM亚型的模型参数。这将使我们能够确定
将使用数字多重T细胞基因组工程(如上所述)测试的关键机械漏洞
在项目3中),并将提供应用于胰腺癌和免疫细胞的计算平台(在
项目2)。为了模拟多细胞迁移、增殖和免疫介导的杀伤动力学,我们将
应用我们的“布朗动力学肿瘤模拟器”(BDTS1.0)来预测肿瘤的整体动力学
NRAS(MES)和PDGFβ(PN)肿瘤。有趣的是,与人类疾病一样,NRAS(MES)肿瘤
免疫“热”,而血小板衍生生长因子β(PN)肿瘤是免疫“冷”。因此,BDTS1.0曾经
为这两种脑瘤亚型开发的,将使我们能够预测紧急免疫治疗的效果
我们团队开发的概念,包括CD200多肽疗法和多肽警报疗法。通过
用活细胞荧光显微镜获得的数据约束模拟器,我们将开发一个多尺度
提供机械降低风险和优化以最大限度地提高物理接近程度的计算模型
并在抗肿瘤T细胞和癌细胞之间频繁相遇。将建模和实验结合起来
将使我们能够检验我们的中心假设,即T细胞与癌细胞的接近是
实体瘤的免疫治疗成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J. Odde其他文献
Outstanding Papers in Cellular and Molecular Bioengineering from the 2011 Biomedical Engineering Society Annual Meeting
- DOI:
10.1007/s12195-012-0227-x - 发表时间:
2012-03-01 - 期刊:
- 影响因子:5.000
- 作者:
X. Edward Guo;David J. Odde - 通讯作者:
David J. Odde
Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership
放射治疗与骨髓源性抑制细胞:打破它们的癌症伙伴关系
- DOI:
10.1016/j.ijrobp.2023.11.050 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:6.500
- 作者:
Kyra M. Boorsma Bergerud;Matthew Berkseth;Drew M. Pardoll;Sudipto Ganguly;Lawrence R. Kleinberg;Jessica Lawrence;David J. Odde;David A. Largaespada;Stephanie A. Terezakis;Lindsey Sloan - 通讯作者:
Lindsey Sloan
Outstanding Papers from the 2009 Biomedical Engineering Society (BMES) Annual Meeting
- DOI:
10.1007/s12195-009-0095-1 - 发表时间:
2009-11-18 - 期刊:
- 影响因子:5.000
- 作者:
David J. Odde;X. Edward Guo - 通讯作者:
X. Edward Guo
Computational Modeling of Tubulin-Tubulin Lateral Interaction: Molecular Dynamics and Brownian Dynamics
- DOI:
10.1016/j.bpj.2017.11.2751 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Mahya Hemmat;David J. Odde - 通讯作者:
David J. Odde
Cellular and Molecular Bioengineering: Editorial Perspective
- DOI:
10.1007/s12195-008-0013-y - 发表时间:
2008-03-25 - 期刊:
- 影响因子:5.000
- 作者:
X. Edward Guo;David J. Odde - 通讯作者:
David J. Odde
David J. Odde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J. Odde', 18)}}的其他基金
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
9067235 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
8847683 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
9268425 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
- 批准号:
2330254 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
- 批准号:
23K05776 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
- 批准号:
2240506 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
- 批准号:
2322719 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
- 批准号:
EP/X025454/1 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Research Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant