Mechanisms of immunopathology of COVID-19/ARDS, and strategies to mitigate detrimental inflammatory responses

COVID-19/ARDS 的免疫病理学机制以及减轻有害炎症反应的策略

基本信息

项目摘要

The SARS-CoV-2 global pandemic has a continuing demand for greater understanding of the mechanisms of disease and the development of therapeutics to complement success in vaccination. Several mouse models have emerged that can be used, albeit with limitations, as models of severe SARS-Cov2 infection. Therefore we have initiated two major efforts to employ mouse models that can be utilized in the efforts to understand dysregulation of innate and adaptive immunity associated with severe viral pneumonia. The ultimate goal is to define these processes as they relate to SARS-CoV-2 to identify points of intervention that can be targeted therapeutically. The first major initiative is to develop mouse models of SARS-CoV-2 infection that model human disease. To achieve this, we have partnered with Jackson Laboratories to genetically engineer mice that express a humanized ACE2 gene to enable virus replication in tissues. We have tested 4 separate strategies to humanize ACE2 at the endogenous locus, or as a transgene. We have also tested mouse backgrounds for susceptibility. The ultimate goal will be to fully characterize the host responses as they relate to pathology in these models, and then utilize the models for testing biologics that block various events in inflammatory cascades. During this year, we finalized establishing 12 models of SARS-CoV-2 infection in 10 strains of mice. In humans, the range of disease phenotypes observed is extreme, from asymptomatic to critical, and is dependent on age, sex, genetics and metabolic status. The 10 strains of mice used included the 8 founder strains of the Collaborative Cross (B6, A/J, 129SJ, NZO, NOD, PWK, CAST and WSB) with additional strains Balb/c and DSB. Together, these strains represent over 90% of the genetic diversity within Mus musculus and have enabled us to model distinct disease phenotypes including a) sensitive mice with high sustained virus replication in lung and CNS (B6,A/J), b) resistant mouse strains associated with lower peak virus titer and earlier control of replication in the lung with no or low dissemination to other organs (PWK, NZO), and c) sex bias where resistance is independent of virus titer in the lung suggesting a sex-differences in host response (CAST, NOD, WSB). Cytokine analysis in the BAL revealed that resistance to disease in males was associated with high IFNb expression at 3dpi. Cytokine profiles generally modeled human responses with lethality associated with sustained high IP-10, as well as increasing MCP3, TNFa, IL-10, RANTES, IFNg and IL1b. Taken together, these mouse models represent a powerful tool to understand mechanisms of immune-mediated control and pathology following SARS-CoV-2 infection. The work is available as a pre-print and is being finalized for publication to include RNAseq data from lungs and brain of all models. We have developed a protocol for safe fixation and subsequent multiplex imaging of the lungs of SAR-COv2 infected animals. Remarkably, in the K18-hACE2 transgenic mouse model of SARS-CoV-2 lethality, lungs on day two after infection showed almost no inflammatory infiltrate and no evidence of type 1 interferon signaling, whereas the influenza-infected animals showed robust innate immune cell infiltrates and interferon signaling at this time point. This reinforces existing evidence that coronaviruses potently suppress type 1 interferon responses and markedly change the inflammatory process. We are pursuing these observations across a more complete time course, using more markers to identify cell types and cell states, to better understand how these changes in innate immunity affect later adaptive responses and also if the discoordination of viral spread and innate immunity plays a special role in pathogenesis. The second major initiative is the employment of a lethal influenza infection as a model for severe viral pneumonia.. Ongoing studies involve (i) tests of interventions in the lethal influenza model that might have clinical utility and (ii) molecular, cell, and tissue level studies aimed at better understanding the underlying mechanism(s) of tissue damage and why interventions that constrain viral replication or innate immunity often fail after an early point in infection but well before death of the host. Using a severe influenza infection model that bypasses early nasopharyngeal replication and leads to rapid deep lung infection, we found that only very early treatment with the anti-viral oseltamivir phosphate (Tamiflu) could prevent death. Among 50 single or combined treatments covering many of the agents tested or used clinically for COVID-19 treatment (anti-IL-6, PANAM-G3, PMX205, inosine Pranobex, anti-PSGL1, ruxolitinib, inbrutinib, acalabrutinib, dypridamole, baricitinib, colchicine, silvelestat, AZD5059, anti-IL-6R, anti-CCL2, and Zileuton among others), none reduced weight loss or led to survival of any of the infected animals, and several worsened disease. These findings argue that either (i) multiple damaging activities are involved and blunting only one is insufficient for a clinical effect, and/or (ii) that irreversible tissue damage occurs early and once this occurs, interfering independently with viral replication or host immunity does not play a major role in preventing eventual death. Imaging of whole lung lobes using our IBEX method for multiplex staining showed that in this influenza infection model, there was early infiltration by neutrophils, extensive spread of the virus, loss of pro-surfactant and associated type 2 pneumocytes, alveolar disruption, and myeloid cell bronchiolar plugging, followed by later arrival of T cells in concert with marked loss of viable lung tissue. While some treatments modified the balance and extent of cell infiltrates, none prevented the damage and parenchymal loss. From these data, we developed the hypothesis that the infected animals rapidly pass a tipping point with respect to residual functional pulmonary capacity and that after this point, interference with inflammatory processes alone is insufficient to rescue the animals. This led to a change in strategy based on combining arrest of further damage and promoting recovery of functional lung structures. Preliminary data indicate that the combination of low dose Tamiflu administered late in the course of infection in combination with one of two additional treatments that either promote pneumocyte replication and alveolar repair or limit further immune destruction can rescue mice from death. These findings prompted testing in the K18-hACE2 transgenic model of SARS-Cov2 infection. Using anti-SARS-Cov2 neutralizing mAb as a substitute for Tamiflu, we ascertained a dose that resulted in 50% survival of animals when administered several days after infection. Initial studies have provided intriguing data. Because CNS disease is a major part of the pathology in the K18-hACE2 model when using nasal infection, our findings may have applicability to the brain fog of long COVID and this is a new direction of study, while at the same time, we are modifying the route of infection to tracheal instillation to better mimic the influenza model and provide a suitable test of the efficacy of the two additional interventions that proved successful in the lethal influenza model.
SARS-CoV-2 全球大流行不断需要更好地了解疾病机制和开发治疗方法,以补充疫苗接种的成功。已经出现了几种小鼠模型,尽管存在局限性,但可以用作严重 SARS-Cov2 感染的模型。因此,我们发起了两项重大努力,以利用小鼠模型来了解与严重病毒性肺炎相关的先天性和适应性免疫失调。最终目标是定义与 SARS-CoV-2 相关的这些过程,以确定可作为治疗目标的干预点。 第一个重大举措是开发模拟人类疾病的 SARS-CoV-2 感染小鼠模型。为了实现这一目标,我们与 Jackson Laboratories 合作,对小鼠进行基因改造,使其表达人源化 ACE2 基因,从而使病毒能够在组织中复制。我们测试了 4 种不同的策略,在内源基因座上人源化 ACE2,或作为转基因。我们还测试了小鼠背景的敏感性。最终目标是充分表征与这些模型中的病理学相关的宿主反应,然后利用这些模型来测试阻止炎症级联中各种事件的生物制剂。 今年,我们最终在 10 种小鼠中建立了 12 个 SARS-CoV-2 感染模型。在人类中,观察到的疾病表型范围很广,从无症状到危重,并且取决于年龄、性别、遗传和代谢状态。使用的 10 种小鼠包括 Collaborative Cross 的 8 个创始品系(B6、A/J、129SJ、NZO、NOD、PWK、CAST 和 WSB)以及其他品系 Balb/c 和 DSB。这些品系代表了小家鼠内超过 90% 的遗传多样性,使我们能够模拟不同的疾病表型,包括 a) 在肺部和中枢神经系统中具有高度持续病毒复制的敏感小鼠 (B6,A/J),b) 与较低峰值病毒滴度和早期控制肺部复制相关的抗性小鼠品系,而没有或很少传播到其他器官(PWK、NZO),以及 c) 性别偏见,其中耐药性与肺部病毒滴度无关,表明宿主反应存在性别差异(CAST、NOD、WSB)。 BAL 中的细胞因子分析表明,雄性对疾病的抵抗力与 3dpi 时的高 IFNb 表达相关。细胞因子谱通常模拟了与持续高 IP-10 以及增加的 MCP3、TNFa、IL-10、RANTES、IFNg 和 IL1b 相关的人类反应和致死率。总而言之,这些小鼠模型是了解 SARS-CoV-2 感染后免疫介导控制和病理机制的强大工具。该工作已作为预印本提供,并正在最终确定出版,其中包括来自所有模型的肺部和大脑的 RNAseq 数据。 我们开发了一种对 SAR-COv2 感染动物的肺部进行安全固定和后续多重成像的方案。值得注意的是,在 SARS-CoV-2 致死性的 K18-hACE2 转基因小鼠模型中,感染后第二天的肺部几乎没有显示炎症浸润,也没有 1 型干扰素信号传导的证据,而流感感染的动物在这个时间点显示出强大的先天免疫细胞浸润和干扰素信号传导。这强化了现有证据,即冠状病毒可有效抑制 1 型干扰素反应并显着改变炎症过程。我们正在更完整的时间过程中进行这些观察,使用更多标记来识别细胞类型和细胞状态,以更好地了解先天免疫的这些变化如何影响后来的适应性反应,以及病毒传播和先天免疫的不协调是否在发病机制中发挥特殊作用。 第二个主要举措是采用致命流感感染作为严重病毒性肺炎的模型。正在进行的研究包括(i)可能具有临床实用性的致命流感模型中的干预措施测试,以及(ii)分子、细胞和组织水平研究,旨在更好地了解组织损伤的潜在机制以及为什么限制病毒复制或先天免疫的干预措施经常出现 在感染早期但在宿主死亡之前就失败了。使用绕过早期鼻咽复制并导致快速深部肺部感染的严重流感感染模型,我们发现只有非常早期使用抗病毒磷酸奥司他韦(达菲)治疗才能预防死亡。在 50 种单一或联合治疗中,涵盖了临床测试或用于 COVID-19 治疗的许多药物(抗 IL-6、PANAM-G3、PMX205、肌苷 Pranobex、抗 PSGL1、ruxolitinib、inbrutinib、acalabrutinib、dypridamole、baricitinib、colchicine、silvelestat、AZD5059、anti-IL-6R、 抗 CCL2 和齐留通等),但都没有减少体重减轻或导致任何受感染动物的生存,并且一些疾病恶化。这些发现认为,要么(i)涉及多种破坏性活动,而仅减弱一种破坏性不足以产生临床效果,和/或(ii)不可逆的组织损伤很早就发生,一旦发生这种情况,独立干扰病毒复制或宿主免疫并不会在预防最终死亡方面发挥主要作用。 使用我们的 IBEX 多重染色方法对整个肺叶进行成像表明,在这种流感感染模型中,中性粒细胞早期浸润,病毒广泛传播,前表面活性剂和相关 2 型肺细胞损失,肺泡破裂和骨髓细胞细支气管堵塞,随后 T 细胞较晚到达,同时活肺组织显着损失。虽然一些治疗方法改变了细胞浸润的平衡和程度,但没有一种方法可以阻止损伤和实质损失。根据这些数据,我们提出了这样的假设:受感染的动物迅速通过残余功能性肺容量的临界点,并且在此之后,仅干扰炎症过程不足以拯救动物。这导致了基于阻止进一步损伤和促进功能性肺结构恢复相结合的策略的改变。初步数据表明,在感染过程后期给予低剂量达菲与另外两种促进肺细胞复制和肺泡修复或限制进一步免疫破坏的治疗方法之一相结合,可以使小鼠免于死亡。这些发现促使在 SARS-Cov2 感染的 K18-hACE2 转基因模型中进行测试。使用抗 SARS-Cov2 中和单克隆抗体作为达菲的替代品,我们确定了感染几天后给予动物 50% 存活率的剂量。初步研究提供了有趣的数据。由于中枢神经系统疾病是K18-hACE2模型中使用鼻腔感染时病理学的主要部分,我们的研究结果可能适用于长期COVID的脑雾,这是一个新的研究方向,同时,我们正在修改气管滴注的感染途径,以更好地模拟流感模型,并为在致命性中被证明成功的另外两种干预措施的功效提供合适的测试。 流感模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sonja Best其他文献

Sonja Best的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sonja Best', 18)}}的其他基金

Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    8336334
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    10692146
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Genome-wide CRISPRa screen to determine the antiviral repertoire of the cell
全基因组 CRISPRa 筛选以确定细胞的抗病毒库
  • 批准号:
    10927987
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    8157105
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    9354888
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    8556030
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    10272173
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Mechanisms of immunopathology of COVID-19/ARDS, and strategies to mitigate detrimental inflammatory responses
COVID-19/ARDS 的免疫病理学机制以及减轻有害炎症反应的策略
  • 批准号:
    10272288
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    10014186
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:
Virus-Host Interactions: Induction and Evasion of Host Innate Immunity
病毒与宿主的相互作用:宿主先天免疫的诱导和逃避
  • 批准号:
    8946500
  • 财政年份:
  • 资助金额:
    $ 20.47万
  • 项目类别:

相似国自然基金

新型蝙蝠MERS簇冠状病毒HKU5的ACE2细胞受体识别及其分子机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
铁皮石斛通过肠道 ACE2 修复 Trp/GPR142 介 导“肠-胰岛 ”轴血糖调控功能的降糖机制研 究
  • 批准号:
    Y24H280055
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
  • 批准号:
    82330111
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
  • 批准号:
    82373169
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
  • 批准号:
    32300137
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
  • 批准号:
    32302080
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感毒清经ACE2/Ang(1-7)/MasR信号通路抑制PM2.5诱导慢性气道炎症的机制:聚焦肺泡巨噬细胞极化与“胞葬”的表型串扰
  • 批准号:
    82305171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
  • 批准号:
    32372399
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Spike变异对新冠病毒抗原性及ACE2种属嗜性的影响研究
  • 批准号:
    82272305
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

新型コロナウイルス感染阻害能を有する抗ACE2抗体の阻害機構に関する構造基盤解明
阐明具有抑制新型冠状病毒感染能力的抗ACE2抗体抑制机制的结构基础
  • 批准号:
    24K09338
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ACE2のユビキチン化を介したコロナウイルス感染機構の解明と創薬への挑戦
通过ACE2泛素化阐明冠状病毒感染机制和药物发现的挑战
  • 批准号:
    22KJ2499
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ACE2阻害薬およびERK経路阻害薬による慢性腎炎進展抑制効果の検証
ACE2抑制剂和ERK通路抑制剂抑制慢性肾炎进展的效果验证
  • 批准号:
    23K14982
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
  • 批准号:
    10722852
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
一次線毛とコロナウイルス感染におけるACE2の役割の解明
阐明 ACE2 在原发菌毛和冠状病毒感染中的作用
  • 批准号:
    22KF0004
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The regulatory roles of ACE2 and its interaction with Nrf2 in arsenic-induced endothelial dysfunction in experimental and epidemiological studies
实验和流行病学研究中 ACE2 的调节作用及其与 Nrf2 的相互作用在砷诱导的内皮功能障碍中的作用
  • 批准号:
    23K16310
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Role of ACE2 in the mechanism of intestinal regeneration
ACE2在肠道再生机制中的作用
  • 批准号:
    23K15078
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research and development of a novel pediatric anti-obesity medicine via ACE2 activation in DIZE
通过 DIZE 中 ACE2 激活研发新型儿科抗肥胖药物
  • 批准号:
    23K15417
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Lung delivery of novel ACE2 variants for COVID-19
针对 COVID-19 的新型 ACE2 变体的肺部输送
  • 批准号:
    10483042
  • 财政年份:
    2022
  • 资助金额:
    $ 20.47万
  • 项目类别:
ACE2 on gut barrier dysfunction and BRB disruption
ACE2 对肠道屏障功能障碍和 BRB 破坏的影响
  • 批准号:
    10535485
  • 财政年份:
    2022
  • 资助金额:
    $ 20.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了