Mechanisms of Assembly and Functional Regulation in Non-canonical Biomolecular Condensates
非经典生物分子凝聚体的组装和功能调节机制
基本信息
- 批准号:10708006
- 负责人:
- 金额:$ 38.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBiochemical ReactionBiological ProcessBiophysicsCRISPR imagingCell physiologyCellsChimeric ProteinsClientCustomCytoplasmDiagnosisDiseaseHeartHomeostasisKnowledgeMapsMediatingMembraneMolecularNucleic AcidsOrganismPathologicPathologyPhysical condensationProcessProteinsRegulationResearchSignal TransductionSignaling ProteinStructureWorkWritinginnovationmeternoveloptogeneticspreventprogramsrecruitself assembly
项目摘要
Project Summary
Biomolecular condensates are micrometer-scale membraneless structures that self-assemble in living cells.
They are ubiquitous across diverse organisms and exist in protein-only conglomerates or protein associated with
nucleic acids. Biomolecular condensate formation is critical to normal cellular processes and the mis-regulation
of condensate assembly or disassembly drives various pathologies. We recently discovered that the pathological
fusion protein EML4-ALK spontaneously forms micrometer-scale condensates in the cytoplasm while lacking
conventional condensate-forming domains or sequence motifs. This condensate elicits a novel mode of cell
signaling by acting as a physical platform that enriches signaling proteins. The recruitment of client proteins to
elevate local protein concentrations implies a general strategy through which multi-protein condensates achieve
biological function. A major gap in the field is that very little is known about condensate-promoting motifs beyond
a few conventional motifs, or about how proteins work together in condensates to achieve their biological function.
We propose a research program that systematically elucidates novel motifs and biophysical principles in protein-
only condensates. This will be accomplished by leveraging innovative approaches such as CRISPR imaging,
optogenetics manipulation, and custom-written analysis and quantification algorithms to pursue two interrelated
research themes. The first theme is identification of alternative mechanisms that enable protein condensate
formation by: discovering novel condensate-promoting motifs by interrogating fusion proteins known or
suspected to form condensates; determining the essentiality and modularity of such motifs; and mapping motif-
function relationships in condensate-mediated processes. The second theme is to uncover physical principles
that regulate composition and dynamics in multi-protein condensates. Although the molecular details may differ,
the sequence space and principles demonstrated here are broadly applicable to a diverse range of proteins and
cellular processes. The long-term objective of our research program is to build an expanded biophysical
foundation to understand biomolecular condensate assembly and functions across cellular homeostasis and
pathology. Such knowledge brings new opportunities to modulate cellular processes through independent
physical approaches instead of traditional ways of interfering with biochemical reactions, and provide a
biophysical framework to prevent, diagnose, and treat condensate-driven diseases.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Guan其他文献
Juan Guan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Creation of nano-biochemical reaction platform using hydrated polymer brush thin film
利用水合聚合物刷薄膜创建纳米生化反应平台
- 批准号:
23K17717 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Creation of biochemical reaction field for target specific reaction in cellulo, by synthetic chromatin liquid-liquid phase separation
通过合成染色质液-液相分离,为纤维素中的目标特异性反应创建生化反应场
- 批准号:
22KJ0929 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2022
- 资助金额:
$ 38.13万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2021
- 资助金额:
$ 38.13万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
DGECR-2019-00215 - 财政年份:2019
- 资助金额:
$ 38.13万 - 项目类别:
Discovery Launch Supplement
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2019
- 资助金额:
$ 38.13万 - 项目类别:
Discovery Grants Program - Individual
Identification of Metabolic Phenotypes and Systemic Biochemical Reaction Networks Associated with Human Blood Pressure
与人体血压相关的代谢表型和全身生化反应网络的鉴定
- 批准号:
MR/S004033/1 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Fellowship
CAREER: Biochemical Reaction Systems: from Structure to Dynamics
职业:生化反应系统:从结构到动力学
- 批准号:
1752672 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Continuing Grant
Construction of novel self-oscillating polymer systems utilizing biochemical reaction
利用生化反应构建新型自振荡聚合物系统
- 批准号:
17K19148 - 财政年份:2017
- 资助金额:
$ 38.13万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)