Deep-Learning-Derived Endophenotypes from Retina Images

来自视网膜图像的深度学习衍生的内表型

基本信息

  • 批准号:
    10706984
  • 负责人:
  • 金额:
    $ 56.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Abstract The goal of this proposal is to establish a novel artificial intelligence-based strategy of genome wide association studies (GWAS) to identify new genetic loci associated with common human disorders. Identification of the genetic factors underlying these diseases will provide not only mechanistic insights into the diseases but also form the basis for developing novel preventative, diagnostic, and targeted therapeutic methods. While GWAS has achieved great successes in the past 1.5 decades, only a small portion of common diseases' heritability can be currently explained by loci identified from traditional GWAS. Leveraging on the public genetics and clinical imaging data, we propose a novel approach, termed image based GWAS (iGWAS), where GWAS will be performed on endophenotypes derived from images using cutting edge deep learning (DL) algorithms. By creating a more objective and quantitative output from the images, with less information loss, many new disease-associated genetic loci are expected to be identified. To test the efficacy of this novel approach, the human visual system will be used as an example. A DL-phenotyper, Multi-modal multi-view Self-Supervised deep Learning Encoder for Retinal images (MuSSLER), will be developed to extract quantitative output from optical coherence tomography scans and fundus images from both normal eyes and patients with diabetic retinopathy (DR). GWAS will be performed on normal eye endophenotypes to elucidate genes relevant to retina development and physiology. Also, GWAS will be performed on DR-specific endophenotypes to identify DR associated genetic loci and candidate genes. If successful, our approach represents a general framework that can be readily extended to the study of other retinal diseases and other common diseases with imaging data. Furthermore, the phenotyping neural network architecture established in this project can be readily adopted to develop an automated grading tool for heterogeneous clinical data and applied to many other common diseases.
摘要 该方案的目标是建立一种新的基于人工智能的基因组策略 广泛关联研究(GWAS),以确定与普通人类相关的新的遗传位点, 紊乱对这些疾病的遗传因素的鉴定不仅可以提供 对疾病的机械见解,而且还形成了开发新的预防性, 诊断和靶向治疗方法。虽然GWAS已经取得了巨大的成功, 在过去的1.5年里,只有一小部分常见疾病的遗传性目前可以 从传统的GWAS中识别的基因座解释。利用公共遗传学和 临床成像数据,我们提出了一种新的方法,称为基于图像的GWAS(iGWAS), 其中GWAS将对使用最新技术从图像中获得的内表型进行 深度学习(DL)算法。通过创建一个更客观和量化的输出, 图像,信息丢失较少,许多新的疾病相关的遗传位点预计将 被识别。为了测试这种新方法的有效性,将使用人类视觉系统 作为一个例子。DL-表型,多模态多视图自监督深度学习 将开发视网膜图像编码器(MuSSLER),以从 正常眼和患者的光学相干断层扫描和眼底图像 糖尿病视网膜病变(DR)将对正常眼内表型进行GWAS, 阐明与视网膜发育和生理相关的基因。此外,将执行GWAS DR特异性内表型,以确定DR相关的遗传基因座和候选基因。如果 成功的,我们的方法代表了一个通用的框架,可以很容易地扩展到 研究其他视网膜疾病和其他常见疾病的影像学资料。而且 在本项目中建立的表型神经网络架构可以很容易地被采用, 开发一个自动分级工具,用于异质性临床数据,并应用于许多其他 常见疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RUI CHEN其他文献

RUI CHEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RUI CHEN', 18)}}的其他基金

Comprehensive Somatic Variant Characterization at the HGSC
HGSC 的综合体细胞变异表征
  • 批准号:
    10662645
  • 财政年份:
    2023
  • 资助金额:
    $ 56.81万
  • 项目类别:
Single Cell Spatial Transcriptomics Shared Instrument at the BCM Core Facility
BCM 核心设施的单细胞空间转录组学共享仪器
  • 批准号:
    10414324
  • 财政年份:
    2022
  • 资助金额:
    $ 56.81万
  • 项目类别:
Effects of cornea epithelial barrier disruption on the cornea trigeminal neural circuit
角膜上皮屏障破坏对角膜三叉神经回路的影响
  • 批准号:
    10586519
  • 财政年份:
    2022
  • 资助金额:
    $ 56.81万
  • 项目类别:
Deep-Learning-Derived Endophenotypes from Retina Images
来自视网膜图像的深度学习衍生的内表型
  • 批准号:
    10392211
  • 财政年份:
    2022
  • 资助金额:
    $ 56.81万
  • 项目类别:
Effects of cornea epithelial barrier disruption on the cornea trigeminal neural circuit
角膜上皮屏障破坏对角膜三叉神经回路的影响
  • 批准号:
    10708182
  • 财政年份:
    2022
  • 资助金额:
    $ 56.81万
  • 项目类别:
Modeling Frontotemporal Dementia in Rhesus Macaques
恒河猴额颞叶痴呆模型
  • 批准号:
    10626978
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
Modeling Frontotemporal Dementia in Rhesus Macaques
恒河猴额颞叶痴呆模型
  • 批准号:
    10599018
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
Modeling Frontotemporal Dementia in Rhesus Macaques
恒河猴额颞叶痴呆模型
  • 批准号:
    9894456
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
Modeling Frontotemporal Dementia in Rhesus Macaques
恒河猴额颞叶痴呆模型
  • 批准号:
    10023200
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
Novel model systems for the study of cone disorders and other heritable retinal diseases
用于研究视锥细胞疾病和其他遗传性视网膜疾病的新型模型系统
  • 批准号:
    10483221
  • 财政年份:
    2018
  • 资助金额:
    $ 56.81万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 56.81万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了