Linking human islet structural heterogeneity to beta cell state

将人类胰岛结构异质性与 β 细胞状态联系起来

基本信息

项目摘要

Project Summary/Abstract The detailed structure of the beta cell niche, and that of the islet in general, remains poorly understood; this is particularly the case for human islets. Islet structure appears heterogeneous across the pancreas, and whether conserved structural features exist among islets is unknown. A detailed understanding of the organizational principles of islets would advance our ability both to reconstitute stem-cell derived islets as a cure for type 1 diabetes (T1D) and to block the progression of events that lead to the loss of beta cells during the progression of diabetes. Therefore, the goal of this proposal is twofold: first, to identify and experimentally validate the critical organizational principles of the islet in general and the beta cell niche in particular, and second, to leverage these organizational principles to engineer more functional islets as a cure for T1D. Towards the first goal, we have developed a custom, semi-automated, 3D imaging and analysis pipeline that permits quantification of the statistical properties of the beta cell niche at sub-micron resolution and across hundreds of individual beta cells. Preliminary analyses of healthy mouse and human islets revealed that (1) in both species beta and delta cells maintain at least one physical contact with a source of basement membrane, whereas alpha cells do not, and (2) beta cells in engineered islets that contact sources of vascular basement membrane have dramatically elevated insulin expression. We hypothesize that beta cell contact with basement membrane is a conserved element of islet structure that must be incorporated into engineered islets to optimize beta cell function. Towards the second goal, we have demonstrated that reconstituting stem cell- derived beta cells into pseudo-islets in a manner that maximizes their contact with basement membrane improves their response to glucose by at least two-fold in vitro and further extends their functionality in vivo. Building on these preliminary findings, we first aim to dramatically expand this analysis across tens of thousands of individual cells in human and mouse islets, incorporating all endocrine cell types along with immune cells, vascular cells, and nerves. This will result in the first quantitative assessment of the endocrine cell structural niche that acknowledges the structural heterogeneity of islets and aims to identify conserved structural motifs. Second, we aim to determine if conserved features of the beta cell niche are necessary and sufficient for optimal beta cell function. We will test this hypothesis using in vitro reconstituted islets, primary human islets cultured ex vivo, and engineered human islets transplanted into mice in vivo. Finally, we will use genome editing techniques to test the necessity of specific pericyte-derived basement membrane molecules for glucose homeostatic function in engineered islets. Taken together, our study will provide the first quantitative structural blueprint for the pancreatic islet, will identify features of the beta cell niche that are conserved and divergent across humans and mice, and will demonstrate a strategy for reconstituting more functional human tissues from stem cells that uses a structural blueprint to guide tissue engineering.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zev Jordan Gartner其他文献

Zev Jordan Gartner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zev Jordan Gartner', 18)}}的其他基金

Linking human islet structural heterogeneity to beta cell state
将人类胰岛结构异质性与 β 细胞状态联系起来
  • 批准号:
    10584317
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
Universal Sample Multiplexing for Single Cell Analysis
用于单细胞分析的通用样品多重分析
  • 批准号:
    10399564
  • 财政年份:
    2021
  • 资助金额:
    $ 40.38万
  • 项目类别:
Universal Sample Multiplexing for Single Cell Analysis
用于单细胞分析的通用样品多重分析
  • 批准号:
    10599233
  • 财政年份:
    2021
  • 资助金额:
    $ 40.38万
  • 项目类别:
Universal Sample Multiplexing for Single Cell Analysis
用于单细胞分析的通用样品多重分析
  • 批准号:
    10190663
  • 财政年份:
    2021
  • 资助金额:
    $ 40.38万
  • 项目类别:
The physical and molecular mechanisms of intestinal villus morphogenesis and repair
肠绒毛形态发生和修复的物理和分子机制
  • 批准号:
    10263285
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
The physical and molecular mechanisms of intestinal villus morphogenesis and repair
肠绒毛形态发生和修复的物理和分子机制
  • 批准号:
    10157985
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
The physical and molecular mechanisms of intestinal villus morphogenesis and repair
肠绒毛形态发生和修复的物理和分子机制
  • 批准号:
    10647653
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
The physical and molecular mechanisms of intestinal villus morphogenesis and repair
肠绒毛形态发生和修复的物理和分子机制
  • 批准号:
    10438924
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
MULTIseq: multiplexing massively parallel single cell transcriptional analysis across time, space, and conditions
MULTIseq:跨时间、空间和条件的多重大规模并行单细胞转录分析
  • 批准号:
    10194558
  • 财政年份:
    2019
  • 资助金额:
    $ 40.38万
  • 项目类别:
MULTIseq: multiplexing massively parallel single cell transcriptional analysis across time, space, and conditions
MULTIseq:跨时间、空间和条件的多重大规模并行单细胞转录分析
  • 批准号:
    10439633
  • 财政年份:
    2019
  • 资助金额:
    $ 40.38万
  • 项目类别:

相似海外基金

The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
  • 批准号:
    10678248
  • 财政年份:
    2023
  • 资助金额:
    $ 40.38万
  • 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
  • 批准号:
    10681939
  • 财政年份:
    2023
  • 资助金额:
    $ 40.38万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10427574
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
  • 批准号:
    10609909
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
  • 批准号:
    10607392
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10675646
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
  • 批准号:
    457552
  • 财政年份:
    2021
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
  • 批准号:
    10331361
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10623306
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
  • 批准号:
    10376866
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了