AID-mediated genetic instability in BCR-ABL1-transformed B cell lineage leukemia

BCR-ABL1 转化的 B 细胞系白血病中 AID 介导的遗传不稳定性

基本信息

  • 批准号:
    7636177
  • 负责人:
  • 金额:
    $ 33.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-03-18 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): B cell lineage acute lymphoblastic leukemia (ALL) represents the most frequent malignancy in children and is also common in adults. Compared to patients with other malignancies, cure rates for patients with ALL are in general higher. The ALL subset with the so-called Philadelphia chromosome (Ph) encoding the oncogenic BCR- ABL1 kinase, however, has a particularly poor prognosis. Ph+ ALL is typically treated with BCR-ABL1 kinase inhibitors such as Imatinib. The treatment response to Imatinib, however, is not durable and after a latency of only a few months, Ph+ ALL cells become drug-resistant and ALL relapses. Of note, the oncogenic BCR-ABL1 kinase is not only expressed in Ph+ ALL (mainly p190 BCR-ABL1) but also in >95% of cases of chronic myeloid leukemia (CML; mainly p210 BCR-ABL1). In contrast to Ph+ ALL, long-term treatment of CML with Imatinib is effective and resistance develops only rarely. In a subgroup of patients with CML, however, the disease progresses into B lymphoid blast crisis (CML-LBC), in which treatment responses are as short-lived as in Ph+ ALL. In most cases, acquired resistance to Imatinib in Ph+ ALL and CML-LBC can be attributed to somatic mutations within the BCR-ABL1 kinase domain, which compromise the efficacy of Imatinib. In preliminary experiments for this proposal, we show that AID is specifically expressed in B cell lineage + clones of BCR-ABL1-driven leukemia (Ph ALL and CML-LBC). In these cells, AID functions as a mutator and thereby contributes to the drug-resistance typically observed in Ph+ ALL and CML-LBC. Based on these findings, our proposal addresses the question of + (1) how AID contributes to genetic instability and drug-resistance in Ph ALL (e.g. AID-specific deletions; Aim 1), (2) to which extent AID contributes to the progression of chronic phase CML to CML-LBC (outgrowth of B lymphoid subclones that carry advantageous mutations; Aim 2), (3) which factors cause aberrant expression of AID in Ph+ ALL and CML-LBC (Aim 3), + (4) and whether AID-expressing clones in Ph ALL and CML-LBC can be specifically targeted in a prodrug- based approach that takes advantage of the enzymatic activity of AID (Aim 4). + Together, these four Aims will help to elucidate mechanisms of drug-resistance in Ph ALL and CML-LBC and + propose a novel concept of targeted treatment Ph ALL and CML-LBC for pre-clinical evaluation. Aim 1: Contribution of AID to genetic instability in Ph+ ALL: We have generated BCR-ABL1-transformed B cell lineage leukemia cells with three levels of AID expression based on their genotype, namely Aid-/-, endogenous AID and forced AID-overexpression. We have injected these leukemia cells into congenic mouse recipients and will compare the developing leukemia clones by comparative genomic hybridization (CGH) analysis to identify AID-specific deletions. Deletion breakpoints will be verified by FISH analysis and mapped to AID-related somatic hypermutation hot spots. We will compare development of Imatinib-resistance in Aid-/- and Aid-wildtype leukemias developing in BCR-ABL1 p190-transgenic mice. Aim 2: Contribution of AID-induced mutations to progression of CML into lymphoid blast crisis: To clarify to which extent AID contributes to the progression of CML into lymphoid blast crisis, we will take two approaches. (1) Transformation of hematopoietic stem cells (HSC) by p210 BCR-ABL1 induces CML-like leukemia with subsequent progression into B lymphoid blast crisis. Studying transgenic mice expressing p210 BCR-ABL1 under control of the HSC-specific Scl-promoter on an Aid-/- background, we will investigate whether Aid-function is required for the outgrowth of B lymphoid blast crisis clones. Second, we will cross Scl-BCR-ABL1 p210 transgenic mice with an Aid-Cre reporter strain that carries YFP preceded by a loxP-flanked Stop cassette. Expression of Aid in these cells will lead to permanent genetic labeling with YFP. Based on YFP-labeling, this mouse model will indicate whether or not outgrowth of B lymphoid subclones requires expression of Aid at least at one point in time during the clonal evolution of CML Aim 3: Identification of factors that regulate AID-expression in BCR-ABL1-driven leukemias: We observed that AID expression substantially varies among primary Ph+ ALL cells from the same patient. These findings suggest that besides homogenously expressed BCR-ABL1 and B cell-specific transcription factors, additional AID-regulatory factors are only expressed in a subset of the leukemia population. Using an Aid-GFP reporter system, we will compare AIDhigh and AIDlow Ph+ ALL cells to identify key AID-regulatory factors. Aim 4: Prodrug-based targeting of AID-expressing Ph+ ALL cells: AID can deaminate monomeric deoxycytidine to deoxyuracil. We hypothesize that AID can likewise activate the monomeric prodrugs monomeric 5-FC (Ancobon(R)) and its derivatives 5-DFCR and Capecitabine (Xeloda(R)) into the cytotoxic metabolite 5- fluorouracil (5-FU). Taking advantage of the enzymatic activity of AID in Ph+ ALL and CML-LBC cells, we will target AID-expressing cells using 5-FC, 5-DFCR and Capecitabine for specific targeting of AID-expressing cells in Ph+ ALL and CML lymphoid blast crisis. PUBLIC HEALTH RELEVANCE: The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 kinase, which drives two types of leukemia: Acute lymphoblastic leukemia (Ph+ ALL) is derived from a transformed B lymphocyte and chronic myeloid leukemia (CML) originates from myeloid cells that would otherwise develop into macrophages or monocytes. While Ph+ ALL represents a rapidly progressive disease already at the outset, the course of CML is typically stable over many years and only shows rapid progression in the terminal stage, the so-called "blast crisis". The reasons leading to progression from chronic phase into blast crisis are largely unknown. The treatment of both Ph+ ALL and CML has been revolutionized by the discovery of the BCR-ABL1 kinase-inhibitor Imatinib. However, even though both leukemia types carry the same genetic abnormality, the outcome of Imatinib-treatment is strikingly different: whereas Imatinib is very effective in the treatment of chronic phase CML, treatment success is only transient for patients with Ph+ ALL or blast crisis CML. In these patients, the leukemia recurs after 4 months on average and is typically drug-resistant owing to the acquisition of additional mutations. Therefore, the understanding of the underlying mutation mechanism and its potential inhibition appears to be critical for further improvement of treatment strategies of Ph+ ALL and CML. Recent work by our group demonstrated that the oncogenic BCR-ABL1 kinase in Ph+ ALL and blast crisis, but not chronic phase CML, induces expression of a mutator enzyme, termed AID (Activation-induced Cytidine Deaminase). The mutations that confer drug-resistance in Ph+ ALL and blast crisis CML can indeed be explained by activity of the AID enzyme. Additional experiments showed that engineered expression of AID in AID-negative chronic phase CML cells introduces the same mutations that cause drug-resistance in patients with AID-positive Ph+ ALL and CML blast crisis. Based on these observations, we propose four series of experiments to address the following questions: (1) Is the AID enzyme required for drug-resistance in AID-positive Ph+ ALL? To test this hypothesis, we will investigate whether BCR-ABL1-induced leukemia cells from mice carrying a deletion of the AID-gene fail to develop drug-resistance. (2) Does the AID enzyme play a critical role in the progression of chronic phase CML into blast crisis? Chronic phase CML can be treated very successfully for many years, whereas blast crisis represents a final and often fatal stage of the disease. (3) Which are the factors that induce aberrant expression of the AID enzyme in Ph+ ALL and blast crisis CML? The identification of such factors will likely help to understand how expression of this deleterious mutator enzyme can be prevented. (4) Is it possible to target AID-expressing cells by taking advantage of the enzymatic activity of AID? For this approach, we propose to use a precursor-drug that has no effect as such but will become toxic upon AID-mediated conversion. Given that AID-expressing cells are more likely to be drug-resistant than others, we propose a treatment approach that is focused on the AID-expressing leukemia cells.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markus Müschen其他文献

Markus Müschen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markus Müschen', 18)}}的其他基金

Targeting GSK3B in refractory B-cell malignancies
靶向 GSK3B 治疗难治性 B 细胞恶性肿瘤
  • 批准号:
    10720232
  • 财政年份:
    2023
  • 资助金额:
    $ 33.2万
  • 项目类别:
CD25-mediated feedback control of BCR-signaling and its oncogenic mimics
CD25 介导的 BCR 信号反馈控制及其致癌模拟物
  • 批准号:
    10455511
  • 财政年份:
    2021
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeted activation of autoimmune checkpoints in B cell malignancies
B 细胞恶性肿瘤中自身免疫检查点的靶向激活
  • 批准号:
    10339747
  • 财政年份:
    2021
  • 资助金额:
    $ 33.2万
  • 项目类别:
Metabolic basis of B cell lineage leukemia relapse
B细胞系白血病复发的代谢基础
  • 批准号:
    10339722
  • 财政年份:
    2021
  • 资助金额:
    $ 33.2万
  • 项目类别:
CD25-mediated feedback control of BCR-signaling and its oncogenic mimics
CD25 介导的 BCR 信号反馈控制及其致癌模拟物
  • 批准号:
    10199948
  • 财政年份:
    2021
  • 资助金额:
    $ 33.2万
  • 项目类别:
CD25-mediated feedback control of BCR-signaling and its oncogenic mimics
CD25 介导的 BCR 信号反馈控制及其致癌模拟物
  • 批准号:
    10339650
  • 财政年份:
    2021
  • 资助金额:
    $ 33.2万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10477047
  • 财政年份:
    2019
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeting oncogenic TCR signaling in PTCL
靶向 PTCL 中的致癌 TCR 信号传导
  • 批准号:
    10005239
  • 财政年份:
    2019
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeting oncogenic TCR signaling in PTCL
靶向 PTCL 中的致癌 TCR 信号传导
  • 批准号:
    10249203
  • 财政年份:
    2019
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeting oncogenic TCR signaling in PTCL
靶向 PTCL 中的致癌 TCR 信号传导
  • 批准号:
    10477022
  • 财政年份:
    2019
  • 资助金额:
    $ 33.2万
  • 项目类别:

相似国自然基金

EzH2在早期前体T细胞急性淋巴细胞性白血病发病中的调控作用及其机制研究
  • 批准号:
    81660024
  • 批准年份:
    2016
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目
CCR9介导的急性淋巴细胞性白血病耐药分子机制的研究
  • 批准号:
    30971280
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
中国儿童急性淋巴细胞性白血病6q16.3-6q21候选肿瘤抑制基因的分离及功能研究
  • 批准号:
    30571982
  • 批准年份:
    2005
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding of the onset and recurrence pattern of intractable acute lymphocytic leukemia based on clone analysis
基于克隆分析了解难治性急性淋巴细胞白血病的发病和复发模式
  • 批准号:
    20K08723
  • 财政年份:
    2020
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Inhibitors of Multi-Drug-Resistant Mutants of BCR-ABL for the Treatment of Chronic Myelogenous Leukemia (CML) and Ph Positive Acute Lymphocytic Leukemia (ALL).
BCR-ABL 多重耐药突变体的新型抑制剂,用于治疗慢性粒细胞白血病 (CML) 和 Ph 阳性急性淋巴细胞白血病 (ALL)。
  • 批准号:
    9047400
  • 财政年份:
    2015
  • 资助金额:
    $ 33.2万
  • 项目类别:
The Role of Genetic Variants in Sensitivity to Methotrexate in Acute Lymphocytic Leukemia Survivors
遗传变异在急性淋巴细胞白血病幸存者对甲氨蝶呤敏感性中的作用
  • 批准号:
    319114
  • 财政年份:
    2014
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Fellowship Programs
Targeting the Bone Marrow Microenvironment In Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的骨髓微环境
  • 批准号:
    8595788
  • 财政年份:
    2013
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
  • 批准号:
    8023518
  • 财政年份:
    2011
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
  • 批准号:
    8404025
  • 财政年份:
    2011
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
  • 批准号:
    8220724
  • 财政年份:
    2011
  • 资助金额:
    $ 33.2万
  • 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
  • 批准号:
    8599754
  • 财政年份:
    2011
  • 资助金额:
    $ 33.2万
  • 项目类别:
INSULIN RESISTANCE IN CHILDREN WITH ACUTE LYMPHOCYTIC LEUKEMIA UNDERGOING INDUCT
正在接受治疗的急性淋巴细胞白血病儿童的胰岛素抵抗
  • 批准号:
    8356701
  • 财政年份:
    2010
  • 资助金额:
    $ 33.2万
  • 项目类别:
INSULIN RESISTANCE IN CHILDREN WITH ACUTE LYMPHOCYTIC LEUKEMIA UNDERGOING INDUCT
正在接受治疗的急性淋巴细胞白血病儿童的胰岛素抵抗
  • 批准号:
    8166720
  • 财政年份:
    2009
  • 资助金额:
    $ 33.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了