Artificial Intelligence for early Detection of Peripheral Artery Disease (AID-PAD)

用于早期检测外周动脉疾病的人工智能 (AID-PAD)

基本信息

  • 批准号:
    10720501
  • 负责人:
  • 金额:
    $ 55.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-21 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Peripheral artery disease, an atherosclerotic disorder typically of the lower extremities, is a life threatening and debilitating condition affecting millions of Americans. Once diagnosed, medical management including initiation of antiplatelet therapy, lipid lowering medications, and behavioral therapy such as supervised exercise and smoking cessation have all been shown to significantly improve health outcomes for those with PAD. However, diagnosis of PAD can be difficult due to poor patient and provider awareness of the disease, a high prevalence of atypical symptoms and conflicting guideline recommendations on screening. Furthermore, despite having similar to higher prevalence of disease, Blacks, females and individuals in lower socioeconomic groups are diagnosed later in the disease process, contributing to poorer outcomes. To address low diagnosis rates we developed an artificial intelligence (AI)-based model to detect PAD prior to clinician diagnosis using vast amounts of electronic health record (EHR) data and advanced machine learning algorithms. However, for our technology to have real-world impact, there is a clear need to: 1) Validate performance of our AI-based PAD detection model across diverse clinical settings and populations (Aim 1), 2), Evaluate clinical utility of using an AI-based PAD screening tool and design effective clinical workflows to enhance net benefit and adoption (Aim 2), and 3) Evaluate the effect of an AI-based PAD screening tool on rates of PAD diagnosis and medical management patterns (Aim 3). Aim 1 will be conducted using EHR data from 3 clinical sites with distinctly different patient populations. Our final model will be validated using the unique American Family Cohort registry, a rich outpatient-based EHR dataset made up of patients from all 50 states, including nearly 1,000,000 rural residents and over 600,000 racial/ethnic minorities. We will perform rigorous evaluation of AI model bias using algorithmic fairness metrics. Using decision analysis we will evaluate model utility to ensure our models demonstrate positive net benefit prior to deployment and we will also employ a unique quality improvement and mixed methods approach to work with providers to develop clinical workflows that foster the use of AI for PAD detection and maximize model benefit. Lastly, using a stepped wedge clinical trial design we will perform a pragmatic analysis of the effect of an AI-based PAD screening tool on rates of PAD diagnosis and treatment. At the conclusion of this study, we will have developed an understanding of how an AI-based PAD screening tool can be used to improve PAD detection, reduce disparities in diagnosis rates, and improve medical management.
项目摘要/摘要 外周动脉疾病是一种典型的下肢动脉粥样硬化性疾病,是一种危及生命和 影响数以百万计的美国人的衰弱状况。一旦确诊,包括启动在内的医疗管理 抗血小板治疗、降脂药物和行为治疗,如监督锻炼和 戒烟已被证明能显著改善PAD患者的健康状况。然而, PAD的诊断可能很困难,因为患者和提供者对这种疾病的认识很差,患病率很高 非典型症状和相互矛盾的筛查指南建议。此外,尽管有 与较高的疾病患病率类似,黑人、女性和社会经济较低群体中的个人 在疾病过程中较晚诊断,导致较差的结果。为了解决诊断率低的问题,我们 开发了一个基于人工智能(AI)的模型,用于在临床医生诊断之前使用Vavast检测PAD 大量的电子健康记录(EHR)数据和先进的机器学习算法。然而,对于我们的 技术要对现实世界产生影响,显然需要:1)验证我们基于AI的PAD的性能 跨不同临床环境和人群的检测模型(目标1),2),评估使用 基于AI的PAD筛查工具和设计有效的临床工作流程,以提高净收益和采用率(目标 2)和3)评估基于人工智能的PAD筛查工具对PAD诊断率和医疗效率的影响 管理模式(目标3)。目标1将使用来自3个临床站点的电子病历数据进行, 不同的患者群体。我们最终的模型将使用独特的美国家庭队列进行验证 注册表,这是一个丰富的基于门诊患者的EHR数据集,由来自所有50个州的患者组成,包括近 100万农村居民和60多万少数民族。我们将对AI进行严格的评估 使用算法公平度量的模型偏差。使用决策分析,我们将评估模型效用,以确保 我们的模型在部署前显示了正的净收益,我们还将采用独特的质量 改进和混合方法方法,与提供商合作开发临床工作流,以促进 使用人工智能进行PAD检测,并最大限度地提高模型效益。最后,采用阶梯式楔形临床试验设计。 我将对基于人工智能的PAD筛查工具对PAD诊断率的影响进行务实分析 和治疗。在这项研究的结论中,我们将对基于AI的 PAD筛查工具可用于改进PAD检测,减少诊断率差异,并提高 医疗管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elsie Gyang Ross其他文献

National Comparison of Hybrid and Open Repair for Aortoiliac-Femoral Occlusive Disease
  • DOI:
    10.1016/j.jvs.2016.05.036
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Mell;Elsie Gyang Ross;Marco Zavatta
  • 通讯作者:
    Marco Zavatta

Elsie Gyang Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elsie Gyang Ross', 18)}}的其他基金

Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
  • 批准号:
    9806796
  • 财政年份:
    2019
  • 资助金额:
    $ 55.08万
  • 项目类别:
Using Artificial Intelligence to Enable Early Identification and Treatment of Peripheral Artery Disease
利用人工智能实现外周动脉疾病的早期识别和治疗
  • 批准号:
    10907378
  • 财政年份:
    2019
  • 资助金额:
    $ 55.08万
  • 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
  • 批准号:
    10472016
  • 财政年份:
    2019
  • 资助金额:
    $ 55.08万
  • 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
  • 批准号:
    10246186
  • 财政年份:
    2019
  • 资助金额:
    $ 55.08万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 55.08万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 55.08万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 55.08万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了