Artificial Intelligence for early Detection of Peripheral Artery Disease (AID-PAD)
用于早期检测外周动脉疾病的人工智能 (AID-PAD)
基本信息
- 批准号:10720501
- 负责人:
- 金额:$ 55.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAdultAffectAlgorithmsAmericanArea Under CurveArtificial IntelligenceAtherosclerosisAwarenessBehavior TherapyBlack PopulationsBlood PlateletsCalibrationCardiovascular DiseasesCardiovascular systemCaringClinicalClinical Trials DesignClinical effectivenessCluster randomized trialCommunitiesDataData SetDecision AnalysisDetectionDiagnosisDiscriminationDiseaseDisparity in diagnosisEarly DiagnosisElectronic Health RecordEnsureEthnic OriginEvaluationEventExerciseFamilyFemaleFosteringGoalsGuidelinesHealthHigh PrevalenceIndividualInstitutionInterventionInterviewLegLifeLimb structureLipidsLower ExtremityMeasuresMedicalMethodsMinorityModelingMorbidity - disease rateNational Heart, Lung, and Blood InstituteOutcomeOutpatientsPathway interactionsPatientsPatternPerformancePeripheral arterial diseasePharmaceutical PreparationsPopulationPopulation HeterogeneityPrimary CareProcessProviderRaceRecommendationRegistriesResearchRiskScreening procedureSiteSubgroupSymptomsTechnologyUnited States Department of Veterans AffairsValidationWomanWorkclinical careclinical research sitecohortdemographicsdesigndigital healthdisease diagnosisdisease disparitydisparities in morbiditydisparity reductionelectronic health record systemethnic minorityevidence baseflexibilityhealth care settingshealth disparityimprovedinnovationlimb lossmachine learning algorithmmortalitymortality disparitynovelpatient populationpersonalized careprimary care settingprospectiveprovider adoptionracial minorityresponseroutine screeningrural dwellersscreeningsexsmoking cessationsocioeconomicstooltrial design
项目摘要
PROJECT SUMMARY / ABSTRACT
Peripheral artery disease, an atherosclerotic disorder typically of the lower extremities, is a life threatening and
debilitating condition affecting millions of Americans. Once diagnosed, medical management including initiation
of antiplatelet therapy, lipid lowering medications, and behavioral therapy such as supervised exercise and
smoking cessation have all been shown to significantly improve health outcomes for those with PAD. However,
diagnosis of PAD can be difficult due to poor patient and provider awareness of the disease, a high prevalence
of atypical symptoms and conflicting guideline recommendations on screening. Furthermore, despite having
similar to higher prevalence of disease, Blacks, females and individuals in lower socioeconomic groups are
diagnosed later in the disease process, contributing to poorer outcomes. To address low diagnosis rates we
developed an artificial intelligence (AI)-based model to detect PAD prior to clinician diagnosis using vast
amounts of electronic health record (EHR) data and advanced machine learning algorithms. However, for our
technology to have real-world impact, there is a clear need to: 1) Validate performance of our AI-based PAD
detection model across diverse clinical settings and populations (Aim 1), 2), Evaluate clinical utility of using an
AI-based PAD screening tool and design effective clinical workflows to enhance net benefit and adoption (Aim
2), and 3) Evaluate the effect of an AI-based PAD screening tool on rates of PAD diagnosis and medical
management patterns (Aim 3). Aim 1 will be conducted using EHR data from 3 clinical sites with distinctly
different patient populations. Our final model will be validated using the unique American Family Cohort
registry, a rich outpatient-based EHR dataset made up of patients from all 50 states, including nearly
1,000,000 rural residents and over 600,000 racial/ethnic minorities. We will perform rigorous evaluation of AI
model bias using algorithmic fairness metrics. Using decision analysis we will evaluate model utility to ensure
our models demonstrate positive net benefit prior to deployment and we will also employ a unique quality
improvement and mixed methods approach to work with providers to develop clinical workflows that foster the
use of AI for PAD detection and maximize model benefit. Lastly, using a stepped wedge clinical trial design we
will perform a pragmatic analysis of the effect of an AI-based PAD screening tool on rates of PAD diagnosis
and treatment. At the conclusion of this study, we will have developed an understanding of how an AI-based
PAD screening tool can be used to improve PAD detection, reduce disparities in diagnosis rates, and improve
medical management.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elsie Gyang Ross其他文献
National Comparison of Hybrid and Open Repair for Aortoiliac-Femoral Occlusive Disease
- DOI:
10.1016/j.jvs.2016.05.036 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:
- 作者:
Matthew Mell;Elsie Gyang Ross;Marco Zavatta - 通讯作者:
Marco Zavatta
Elsie Gyang Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elsie Gyang Ross', 18)}}的其他基金
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
9806796 - 财政年份:2019
- 资助金额:
$ 55.08万 - 项目类别:
Using Artificial Intelligence to Enable Early Identification and Treatment of Peripheral Artery Disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10907378 - 财政年份:2019
- 资助金额:
$ 55.08万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10472016 - 财政年份:2019
- 资助金额:
$ 55.08万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10246186 - 财政年份:2019
- 资助金额:
$ 55.08万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
Standard Grant














{{item.name}}会员




