Using Artificial Intelligence to Enable Early Identification and Treatment of Peripheral Artery Disease
利用人工智能实现外周动脉疾病的早期识别和治疗
基本信息
- 批准号:10907378
- 负责人:
- 金额:$ 16.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAdultAffectAgeAlgorithmsAmericanApplications GrantsArtificial IntelligenceAwardAwarenessBlood VesselsCardiovascular DiseasesCardiovascular systemCaringCessation of lifeCharacteristicsClassificationClinicalClinical ResearchClinical TrialsCohort StudiesCost AnalysisCost Effectiveness AnalysisCosts and BenefitsCurrent Procedural Terminology CodesDataData SetDiagnosisDiseaseDisease OutcomeEarly DiagnosisEarly identificationEarly treatmentElectronic Health RecordEnrollmentEnsureEventFoundationsFutureGoalsGrantHealthHealth Services ResearchHealthcareHealthcare SystemsImageInformaticsInterventionKnowledgeLearningLogistic RegressionsLongevityMachine LearningMedicalMedicareMedicineMentorshipModelingMorbidity - disease rateMyocardial InfarctionNewly DiagnosedNoiseNotificationOntologyOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsPerformancePeripheral arterial diseasePhysiciansPostdoctoral FellowQuality of CareRandomizedRandomized Controlled Clinical TrialsRecommendationRecordsResearchResearch PersonnelResearch ProposalsResourcesRiskRisk FactorsScientistScreening procedureSiteSpecialistSpecificityStrokeStructureSurgeonSymptomsTechnologyTestingTextTimeTrainingTranslatingUnited States National Institutes of HealthUniversitiesVascular DiseasesWorkbiomedical informaticscare burdencareercareer developmentclinical centerclinical data warehouseclinical implementationcohortcomputing resourcescostcost effectivecost-effectiveness evaluationdata analysis pipelinedeep learning algorithmdesigndisease diagnosisdisorder riskelectronic health datahigh riskhuman subjecthuman very old age (85+)implementation scienceimprovedlimb lossmachine learning algorithmmortalitynew technologynovelpost-doctoral trainingprematurepreventprofessorprospectiverandom forestrandomized trialrecurrent neural networkresearch studyrisk stratificationscreeningtext searchingtooltreatment effect
项目摘要
ABSTRACT
The purpose of this award is to provide Dr. Elsie Ross, Assistant Professor of Surgery (Vascular Surgery) and
Medicine (Biomedical Informatics Research) at Stanford University, the support necessary to transition her
from a junior investigator into an independent surgeon-scientist in translational biomedical informatics. Dr.
Ross is a vascular surgeon with an advanced degree in health services research and postdoctoral training in
biomedical informatics. Her long-term goal is to combine her interdisciplinary training to develop and implement
machine learning tools that will enable the delivery of precise, high-value care to patients with cardiovascular
diseases. Her career development activities focus on advancing her ability to translate informatics discoveries
into viable clinical tools by 1) completing didactic courses to deepen and expand her knowledge of deep
learning algorithms, clinical trials and implementation science, 2) designing and conducting her first
independent human subjects clinical research study evaluating the performance of machine learning
technology, 3) implementing and evaluating the effects of an electronic health record (EHR)-based screening
tool to identify latent vascular disease, and 4) strengthening her previous training in cost-effectiveness analysis
to enable her future aim of evaluating the associated costs and utility of pro-active, automated disease
screening. The candidate has convened a mentorship team that includes Dr. Nigam Shah, a biomedical
informatics expert who combines machine learning, text-mining and medical ontologies to enable a learning
health care system; Dr. Kenneth Mahaffey a world-expert in cardiovascular clinical trials; and Dr. Paul
Heidenreich, an expert in implementation sciences with a focus on the use of EHR interventions to improve
care quality for cardiovascular patients and evaluating the cost-effectiveness of new technologies. The
research proposal builds on the candidate's prior work with using machine learning and EHR data to evaluate
and predict cardiovascular disease outcomes. The candidate now proposes to characterize the performance of
machine learning algorithms in identifying patients with peripheral artery disease (PAD) using EHR data (Aim
1), evaluate whether learned classification models perform better than traditional risk factors for identification of
undiagnosed PAD in a prospective patient cohort (Aim 2), and implement an EHR-based screening tool to
identify patients with undiagnosed PAD and evaluate the diagnosis and treatment effects (Aim 3). Completion
of the proposed research will result in a novel, EHR-based screening tool for identification of undiagnosed
vascular disease that can decrease PAD-related cardiovascular morbidity and mortality through earlier and
more aggressive medical management. This research will also form the basis for an R01 application before the
end of the award to conduct a multi-site randomized-controlled clinical trial to evaluate the impact of EHR-
based proactive PAD screening.
!
!
!
摘要
该奖项的目的是提供博士埃尔西罗斯,外科助理教授(血管外科)和
医学(生物医学信息学研究)在斯坦福大学,必要的支持,以过渡她
从一个初级研究员转变为一个独立的外科医生,生物医学信息学的科学家。博士
罗斯是一名血管外科医生,拥有卫生服务研究高级学位和博士后培训,
生物医学信息学她的长期目标是联合收割机,她的跨学科培训,开发和实施
机器学习工具,能够为心血管疾病患者提供精确,高价值的护理
疾病她的职业发展活动侧重于提高她翻译信息学发现的能力
通过1)完成教学课程,以加深和扩展她对深度治疗的知识,
学习算法,临床试验和实施科学,2)设计和进行她的第一个
评估机器学习性能的独立人类受试者临床研究
技术,3)实施和评估基于电子健康记录(EHR)的筛查的效果
工具,以确定潜在的血管疾病,和4)加强她以前的培训,在成本效益分析
以实现她未来的目标,即评估主动自动化疾病的相关成本和效用,
筛选候选人召集了一个导师团队,其中包括生物医学博士Nigam Shah
信息学专家,他将机器学习、文本挖掘和医学本体结合起来,
医疗保健系统; Kenneth Mahaffey博士是心血管临床试验的世界专家; Paul
Heidenreich是实施科学专家,专注于使用EHR干预措施来改善
心血管患者的护理质量并评估新技术的成本效益。的
研究计划建立在候选人之前的工作基础上,使用机器学习和EHR数据来评估
并预测心血管疾病的结果。候选人现在提议描述
使用EHR数据识别外周动脉疾病(PAD)患者的机器学习算法(目的
1)评估学习的分类模型是否比传统的风险因素更好地识别
在前瞻性患者队列中未诊断的PAD(目标2),并实施基于EHR的筛查工具,
识别未确诊的PAD患者,评价诊断和治疗效果(目的3)。完成
拟议的研究将产生一种新的,基于EHR的筛查工具,用于识别未确诊的
血管疾病可以通过早期和早期治疗降低PAD相关的心血管发病率和死亡率,
更积极的医疗管理。这项研究也将成为R 01申请的基础,
结束的奖项进行多站点随机对照临床试验,以评估EHR的影响-
基于主动PAD筛查。
!
!
!
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
APLUS: A Python library for usefulness simulations of machine learning models in healthcare.
- DOI:10.1016/j.jbi.2023.104319
- 发表时间:2023-03
- 期刊:
- 影响因子:4.5
- 作者:Wornow, Michael;Ross, Elsie Gyang;Callahan, Alison;Shah, Nigam H.
- 通讯作者:Shah, Nigam H.
The potential of chatbots in chronic venous disease patient management.
聊天机器人在慢性静脉疾病患者管理中的潜力。
- DOI:10.1016/j.jvsvi.2023.100019
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Athavale,Anand;Baier,Jonathan;Ross,Elsie;Fukaya,Eri
- 通讯作者:Fukaya,Eri
Evaluating prediction model performance.
评估预测模型的性能。
- DOI:10.1016/j.surg.2023.05.023
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Cabot,JohnH;Ross,ElsieGyang
- 通讯作者:Ross,ElsieGyang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elsie Gyang Ross其他文献
National Comparison of Hybrid and Open Repair for Aortoiliac-Femoral Occlusive Disease
- DOI:
10.1016/j.jvs.2016.05.036 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:
- 作者:
Matthew Mell;Elsie Gyang Ross;Marco Zavatta - 通讯作者:
Marco Zavatta
Elsie Gyang Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elsie Gyang Ross', 18)}}的其他基金
Artificial Intelligence for early Detection of Peripheral Artery Disease (AID-PAD)
用于早期检测外周动脉疾病的人工智能 (AID-PAD)
- 批准号:
10720501 - 财政年份:2023
- 资助金额:
$ 16.09万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
9806796 - 财政年份:2019
- 资助金额:
$ 16.09万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10472016 - 财政年份:2019
- 资助金额:
$ 16.09万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10246186 - 财政年份:2019
- 资助金额:
$ 16.09万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 16.09万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 16.09万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 16.09万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 16.09万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 16.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 16.09万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 16.09万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 16.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 16.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 16.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




