Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
基本信息
- 批准号:10246186
- 负责人:
- 金额:$ 16.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdultAffectAgeAlgorithmsAmericanApplications GrantsArtificial IntelligenceAwardAwarenessBlood VesselsCardiovascular DiseasesCardiovascular systemCaringCessation of lifeCharacteristicsClassificationClinicalClinical ResearchClinical TrialsCohort StudiesCost Effectiveness AnalysisCost utilityCosts and BenefitsCurrent Procedural Terminology CodesDataData SetDiagnosisDiseaseDisease OutcomeEarly DiagnosisEarly identificationEarly treatmentElectronic Health RecordEnrollmentEnsureEvaluationEventFoundationsFutureGoalsGrantHealthHealth Services ResearchHealthcareHealthcare SystemsImageInformaticsInterventionKnowledgeLeadLearningLogistic RegressionsLongevityMachine LearningMedicalMedicareMedicineMentorshipModelingMorbidity - disease rateMyocardial InfarctionNewly DiagnosedNoiseNotificationOntologyOperative Surgical ProceduresPatient-Focused OutcomesPatientsPerformancePeripheral arterial diseasePhysiciansQuality of CareRandomizedRandomized Controlled Clinical TrialsRecommendationRecordsResearchResearch PersonnelResearch ProposalsResearch TrainingResourcesRiskRisk FactorsScientistScreening procedureSensitivity and SpecificitySiteSpecialistStrokeStructureSurgeonSymptomsTechnologyTestingTextTimeTrainingTranslatingUnited States National Institutes of HealthUniversitiesVascular DiseasesWorkbasebiomedical informaticscare burdencareercareer developmentclinical centerclinical data warehouseclinical implementationclinical trial implementationcohortcomputing resourcescostcost effectivecost outcomescost-effectiveness evaluationdata analysis pipelinedeep learning algorithmdesigndisease diagnosisdisorder riskelectronic datahigh riskhuman subjecthuman very old age (85+)implementation scienceimprovedlimb lossmachine learning algorithmmortalitynew technologynovelpost-doctoral trainingprematurepreventprofessorprospectiverandom forestrandomized trialrecurrent neural networkresearch studyrisk stratificationscreeningtext searchingtooltreatment effect
项目摘要
ABSTRACT
The purpose of this award is to provide Dr. Elsie Ross, Assistant Professor of Surgery (Vascular Surgery) and
Medicine (Biomedical Informatics Research) at Stanford University, the support necessary to transition her
from a junior investigator into an independent surgeon-scientist in translational biomedical informatics. Dr.
Ross is a vascular surgeon with an advanced degree in health services research and postdoctoral training in
biomedical informatics. Her long-term goal is to combine her interdisciplinary training to develop and implement
machine learning tools that will enable the delivery of precise, high-value care to patients with cardiovascular
diseases. Her career development activities focus on advancing her ability to translate informatics discoveries
into viable clinical tools by 1) completing didactic courses to deepen and expand her knowledge of deep
learning algorithms, clinical trials and implementation science, 2) designing and conducting her first
independent human subjects clinical research study evaluating the performance of machine learning
technology, 3) implementing and evaluating the effects of an electronic health record (EHR)-based screening
tool to identify latent vascular disease, and 4) strengthening her previous training in cost-effectiveness analysis
to enable her future aim of evaluating the associated costs and utility of pro-active, automated disease
screening. The candidate has convened a mentorship team that includes Dr. Nigam Shah, a biomedical
informatics expert who combines machine learning, text-mining and medical ontologies to enable a learning
health care system; Dr. Kenneth Mahaffey a world-expert in cardiovascular clinical trials; and Dr. Paul
Heidenreich, an expert in implementation sciences with a focus on the use of EHR interventions to improve
care quality for cardiovascular patients and evaluating the cost-effectiveness of new technologies. The
research proposal builds on the candidate's prior work with using machine learning and EHR data to evaluate
and predict cardiovascular disease outcomes. The candidate now proposes to characterize the performance of
machine learning algorithms in identifying patients with peripheral artery disease (PAD) using EHR data (Aim
1), evaluate whether learned classification models perform better than traditional risk factors for identification of
undiagnosed PAD in a prospective patient cohort (Aim 2), and implement an EHR-based screening tool to
identify patients with undiagnosed PAD and evaluate the diagnosis and treatment effects (Aim 3). Completion
of the proposed research will result in a novel, EHR-based screening tool for identification of undiagnosed
vascular disease that can decrease PAD-related cardiovascular morbidity and mortality through earlier and
more aggressive medical management. This research will also form the basis for an R01 application before the
end of the award to conduct a multi-site randomized-controlled clinical trial to evaluate the impact of EHR-
based proactive PAD screening.
!
!
!
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elsie Gyang Ross其他文献
National Comparison of Hybrid and Open Repair for Aortoiliac-Femoral Occlusive Disease
- DOI:
10.1016/j.jvs.2016.05.036 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:
- 作者:
Matthew Mell;Elsie Gyang Ross;Marco Zavatta - 通讯作者:
Marco Zavatta
Elsie Gyang Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elsie Gyang Ross', 18)}}的其他基金
Artificial Intelligence for early Detection of Peripheral Artery Disease (AID-PAD)
用于早期检测外周动脉疾病的人工智能 (AID-PAD)
- 批准号:
10720501 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
9806796 - 财政年份:2019
- 资助金额:
$ 16.12万 - 项目类别:
Using Artificial Intelligence to Enable Early Identification and Treatment of Peripheral Artery Disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10907378 - 财政年份:2019
- 资助金额:
$ 16.12万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10472016 - 财政年份:2019
- 资助金额:
$ 16.12万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant