Integrating Multiple Electronic Health Records Systems to Improve Lung Cancer Outcomes
整合多个电子健康记录系统以改善肺癌结果
基本信息
- 批准号:10718073
- 负责人:
- 金额:$ 65.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-12 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressArtificial IntelligenceAsianBehavioralBiometryCaliforniaCancer EtiologyCancer PatientCancer SurvivorCessation of lifeClinicalClinical InformaticsClinical TrialsCommunitiesConsensusCost SavingsDataData SourcesDatabasesDiagnosisElectronic Health RecordEligibility DeterminationEpidemiologyEthnic OriginGeneral PopulationGoalsGuidelinesHealthHealthcareHealthcare SystemsImmunologic MarkersIncidenceIndividualLinkLongterm Follow-upLungMalignant neoplasm of lungMeasuresMethodsModelingMorbidity - disease rateOncologyOutcomePatientsPatternPopulationPopulation HeterogeneityPublic HealthRaceRadiology SpecialtyRecording of previous eventsRecordsRegistriesResearchResearch PersonnelRiskRisk FactorsSmokeSmokerSmokingSmoking StatusStatistical MethodsSurvivorsThoracic Surgical ProceduresTimeTranslational ResearchUnited States Preventative Services Task ForceUniversitiescancer diagnosiscancer riskcancer survivalcomputed tomography screeningelectronic health record systemepidemiologic dataethnic diversityhigh riskimprovedinterestlung cancer screeningmortalityneoplasm registryneutrophilnever smokernever smokingnovelpopulation basedpredictive modelingrandomized trialrisk predictionscreeningscreening guidelinessexshared databasesmoking cessationstandard of caretargeted treatmenttooltranslational impact
项目摘要
Recent advances in screening and treatment have increased the number of lung cancer (LC) survivors (~571,340
LC survivors as of 2019). However, studies have shown that these survivors have a high risk for developing
second primary lung cancer (SPLC), with the median 10-year SPLC risk of 8.36% after surviving 5 years from
the initial diagnosis. Further, survivors with SPLC have significantly higher mortality vs. those who remain with
single primary LC. Many unaddressed challenges exist: (1) While prior studies identified several risk factors for
SPLC, these are mostly measured and fixed at the time of initial diagnosis, with findings focused on survivors
who have ever smoked. However, SPLC risk is likely to be influenced by dynamic changes of various factors
(e.g., smoking cessation), and our preliminary data show that SPLC risk remains just as high among survivors
who never smoked. (2) Nevertheless, current epidemiologic data mainly used for SPLC do not offer detailed data
measured after initial diagnosis, (3) nor have risk factors or predictions been evaluated for never-smoking
survivors. (4) Further, limited trial evidence exists to address the important clinical question of whether and how
to continue CT screening after IPLC diagnosis among LC survivors, which requires a long-term follow-up that is
often not feasible in clinical trials. (5) Importantly, data on detailed screening for LC survivors are typically lacking
in most population-based data. We plan to address these multiple challenges by leveraging electronic health
records (EHRs) and novel analytical approaches to generate evidence to inform clinical decisions. Our long-term
goal is to improve LC outcomes by focusing on SPLC utilizing large EHR data combined with novel statistical
methods that integrate patient data measured after initial diagnosis. Our Specific Aims are: (AIM 1) to use a
novel 3-way linkage to establish an integrated shared database for LC (i.e., Oncoshare-Lung) using EHRs from
community-based and academic healthcare systems (with an ethnically diverse population with a high proportion
of Asian never smokers) linked to the California Cancer Registry (CCR) ; (AIM 2) to provide a set of clinical
decision tools for efficiently managing LC survivors by developing a novel statistical framework for predicting
dynamic SPLC risks by capturing data measured after IPLC diagnosis; and (AIM 3) to evaluate the feasibility
and utility of a novel causal inference method to assess efficient screening strategies for SPLC in LC survivors
using EHRs. We will apply a new causal inference method that explicitly emulates the target trials (hypothetical
randomized trials to answer the question of interest) in estimating the effects of continuing CT screening in long-
term LC survivors under varying eligibility criteria. We expect that the completion of this research will fill the
critical gaps in SPLC by providing: (1) clinical decision tools to assess individuals’ dynamic SPLC risks to identify
high-risk survivors for tailored surveillance, (2) new analytic pipelines to evaluate efficient screening criteria for
SPLC, and (3) a well-curated database for high-impact translational research for LC outcomes and surveillance
in an ethnically diverse population that provides a unique opportunity to examine critical questions in SPLC.
筛查和治疗的最新进展增加了肺癌的数量(LC)表面(〜571,340
LC生存截至2019年)。但是,研究表明,这些生存具有高风险
第二个原发性肺癌(SPLC),中位10年的SPLC风险为8.36%
初始诊断。此外,SPLC的生存具有更高的死亡率,而与之相比
单主要LC。存在许多未解决的挑战:(1)虽然先前的研究确定了几个风险因素
SPLC,这些主要在初次诊断时测量和固定,发现重点是生存
曾经抽烟的人。但是,SPLC风险可能受到各种因素的动态变化的影响
(例如,戒烟),我们的初步数据表明,SPLC风险在幸存者中仍然很高
谁从未抽烟。 (2)然而,当前主要用于SPLC的流行病学数据不提供详细数据
在初始诊断后测量(3)也没有评估危险因素或预测,从未吸烟
幸存者。 (4)此外,存在有限的试验证据,以解决是否以及如何以及如何解决的重要临床问题
在LC存活中IPLC诊断后继续进行CT筛查,这需要长期随访
在临床试验中通常不可行。 (5)重要的是,通常缺少有关LC幸存的详细筛选数据
在大多数基于人群的数据中。我们计划通过利用电子健康来应对这些多重挑战
记录(EHR)和新的分析方法,以产生证据以告知临床决策。我们的长期
目标是通过使用大型EHR数据与新颖的统计数据相结合来改善LC结果
在初始诊断后测量的集成患者数据的方法。我们的具体目的是:(目标1)
新颖的3向链接以使用来自EHR的EHR建立LC(即Oncoshare-Lung)的集成共享数据库
基于社区和学术的医疗保健系统(具有较高比例的种族多样性
与加利福尼亚癌症登记处(CCR)相关的亚洲从不吸烟者的; (目标2)提供一组临床
通过开发一个预测新颖的统计框架,用于有效管理LC生存的决策工具
通过捕获IPLC诊断后测量的数据,动态SPLC风险; (目标3)评估可行性
和一种新的因果推理方法的实用性,以评估LC存活中SPLC的有效筛查策略
使用EHR。我们将采用一种新的因果推理方法,该方法明确模拟了目标试验(假设
随机试验回答感兴趣的问题),以估算长期继续进行CT筛选的影响
在不同的资格标准下,术语LC存活。我们预计这项研究的完成将填补
通过提供:(1)评估个人动态SPLC风险以识别的临床决策工具:
用于量身定制监视的高风险表面,(2)新的分析管道,以评估有效的筛查标准
SPLC和(3)曲面良好的数据库,用于用于LC结果和监视的高影响转化研究
在一个种族多样化的人群中,它提供了一个独特的机会来研究SPLC中的关键问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Summer S Han其他文献
Summer S Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Summer S Han', 18)}}的其他基金
Evaluation of genetic, clinical, and environmental risk factors to establish effective screening strategies for second primary lung cancer
评估遗传、临床和环境危险因素,建立第二原发性肺癌的有效筛查策略
- 批准号:
9912737 - 财政年份:2018
- 资助金额:
$ 65.89万 - 项目类别:
Evaluation of genetic, clinical and environmental risk factors to establish effective screening strategies for second primary lung cancer
评估遗传、临床和环境危险因素,建立有效的第二原发性肺癌筛查策略
- 批准号:
10517865 - 财政年份:2018
- 资助金额:
$ 65.89万 - 项目类别:
Evaluation of genetic, clinical, and environmental risk factors to establish effective screening strategies for second primary lung cancer
评估遗传、临床和环境危险因素,建立第二原发性肺癌的有效筛查策略
- 批准号:
10133465 - 财政年份:2018
- 资助金额:
$ 65.89万 - 项目类别:
Evaluation of genetic, clinical, and environmental risk factors to establish effective screening strategies for second primary lung cancer
评估遗传、临床和环境危险因素,建立第二原发性肺癌的有效筛查策略
- 批准号:
10394712 - 财政年份:2018
- 资助金额:
$ 65.89万 - 项目类别:
相似国自然基金
人工智能驱动的营销模式和消费者行为研究
- 批准号:72332006
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
制造企业人工智能工作场景下员工AI认同影响机制与员工主动行为内在机理研究
- 批准号:72362025
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于原子贡献与人工智能的萃取精馏溶剂分子设计研究
- 批准号:22308037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hawaii Pacific Islands Mammography Registry
夏威夷太平洋岛屿乳腺X线摄影登记处
- 批准号:
10819068 - 财政年份:2023
- 资助金额:
$ 65.89万 - 项目类别:
Multi-institutional validation of a multi-modal machine learning algorithm to predict and reduce acute care during cancer therapy
对多模式机器学习算法进行多机构验证,以预测和减少癌症治疗期间的急性护理
- 批准号:
10587221 - 财政年份:2023
- 资助金额:
$ 65.89万 - 项目类别:
Leveraging Electronic Health Records for Reducing Dementia Screening Disparities in Diverse Communities
利用电子健康记录减少不同社区的痴呆症筛查差异
- 批准号:
10525774 - 财政年份:2023
- 资助金额:
$ 65.89万 - 项目类别:
PAcific Islander, Native Hawaiian and Asian American Cardiovascular Health Epidemiology (PANACHE) Study
太平洋岛民、夏威夷原住民和亚裔美国人心血管健康流行病学 (PANACHE) 研究
- 批准号:
10632951 - 财政年份:2023
- 资助金额:
$ 65.89万 - 项目类别:
NY Community-Hospital-Academic Maternal Health Equity Partnerships (NY-CHAMP)
纽约社区-医院-学术界孕产妇健康公平合作伙伴关系 (NY-CHAMP)
- 批准号:
10748868 - 财政年份:2023
- 资助金额:
$ 65.89万 - 项目类别: