A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
基本信息
- 批准号:10793845
- 负责人:
- 金额:$ 5.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityArchitectureBindingBiochemicalBiochemistryBiological AssayBiological ModelsCapsidCapsid ProteinsCell NucleusCellsCommunitiesComplementComplexCryoelectron MicroscopyCytoplasmDNADiameterDimensionsDiseaseDockingEnvironmentFaceFoundationsGatekeepingGeneticGenomeGeometryGoalsHIVHIV InfectionsHIV-1In VitroIndividualIntegration Host FactorsInvadedLibrariesMolecularMutagenesisNUP214 geneNanotechnologyNuclearNuclear ImportNuclear PoreNuclear Pore ComplexNuclear Pore Complex ProteinsNuclear ProteinsPatternPattern RecognitionPore ProteinsPositioning AttributeProcessProteinsRecombinantsResearchResearch PersonnelResearch Project GrantsRestSeriesSpecificityStructureSurfaceSystemTechniquesTestingValidationViralViral GenesVirusVirus DiseasesVirus ReplicationWorkX-Ray Crystallographyantiretroviral therapybasedensitydesignexperimental studygenetic approachglobal healthinhibitorinnovationinsightlive cell imagingnanoporenovelnucleocytoplasmic transportpathogenprotein structurestructural biologysuccesstherapeutic developmentthree dimensional structuretool
项目摘要
Project Summary
Human immunodeficiency virus type 1 (HIV-1) remains a major threat to global health. Therefore, it is essential
that we fully understand the mechanism of viral infectivity to provide new avenues for therapeutic development.
After invading a non-dividing host cell, HIV-1 must gain access to the genetic vault, the nucleus. To do this, the
viral genes, packaged in a capsid assembly, need to pass through nuclear pore complexes (NPCs). NPCs are
massive protein channels that function as the gatekeepers of the cell nucleus. However, how the HIV-1 capsid
breaches the barrier formed by the NPC remains poorly understood. Previous studies were hampered by the
complexity of the NPC structure and the lack of molecular-level details of capsid-nucleoporin interactions; there
was also a general inability of conventional in vitro platforms to capture the structural complexity of the viral
capsid, which presents patterns that are recognized by host factors. Therefore, unlocking more mechanistic
details of HIV-1 nuclear entry calls for innovative in vitro approaches capable of recapitulating higher-order
capsid assemblies and the native environment of nuclear pores. We propose to establish such a platform by
leveraging our recently established DNA-origami-based NPC mimics, termed NuPODs (NucleoPorins
Organized by DNA), which contain precisely controlled pore dimensions and nucleoporins grafted with
programmable density and orientation, as well as the programmable capsid protein (CA) assemblies that
faithfully recreate selective fragments or the entire HIV-1 capsid surface. We will further validate our in vitro
findings by infectivity experiments and live-cell imaging. Our multi-investigator team will draw from our
respective expertise, including HIV biochemistry, structural biology, DNA nanotechnology, nuclear transport,
and live-cell imaging, to build and apply this enabling platform for the study of HIV-1 capsid nuclear transport.
Specifically, we will first comprehensively study the interactions between HIV-1 capsids and an assortment of
cellular factors involved in HIV-1 nuclear import (Aim 1). Using soluble high-order CA assemblies and
recombinant nucleoporins, we will define the biochemical and structural basis of capsid-nucleoporin binding,
laying the foundation for the rest of the study. We will then build a library of NuPODs with increasing structural
and compositional complexity, to identify the key determinants of HIV-1 nuclear import and the associated
remodeling of the viral capsid and the NPC (Aim 2). These NuPODs will be built with multiple types of
nucleoporins positioned at designated positions on a DNA-origami channel with tunable dimensions and
stiffness. Systematically varying the NuPOD design and analyzing the resultant NuPOD-capsid docking and
insertion will help understand HIV-1 nuclear import with molecular-level details. Additionally, we will validate
our key findings using cell-based virologic experiments (Aim 3). Overall, we expect this project to create
powerful tools that will not only help define the mechanism of HIV nuclear entry, but also enable us to explore
the nuclear transport of many other viruses.
项目摘要
1型人体免疫机能丧失病毒(艾滋病毒-1)仍然是对全球健康的一个主要威胁。因此必须
我们完全了解病毒感染的机制,为治疗开发提供新的途径。
在侵入非分裂宿主细胞后,HIV-1必须进入基因库,即细胞核。为此,
包装在衣壳装配体中的病毒基因需要通过核孔复合物(NPC)。npc是
大量的蛋白质通道,作为细胞核的看门人。然而,HIV-1衣壳
突破由NPC形成的障碍仍然知之甚少。以前的研究受到了
NPC结构的复杂性和缺乏分子水平的capture-nucleoporin相互作用的细节;
也是常规体外平台一般无法捕获病毒的结构复杂性,
衣壳,其呈现被宿主因子识别的模式。因此,解锁更加机械化,
HIV-1进入细胞核的细节需要创新的体外方法,
衣壳组装和核孔的天然环境。我们建议设立这样一个平台,
利用我们最近建立的基于DNA折纸的NPC模拟物,称为NuPODs(NucleoPorins
由DNA组织),其含有精确控制的孔尺寸和接枝有
可编程的密度和方向,以及可编程的衣壳蛋白(CA)组件,
忠实地重建选择性片段或整个HIV-1衣壳表面。我们将进一步验证我们的体外
感染性实验和活细胞成像的结果。我们的多调查员团队将从我们的
各自的专业知识,包括艾滋病毒生物化学,结构生物学,DNA纳米技术,核运输,
和活细胞成像,建立和应用这个使能平台,研究HIV-1衣壳核转运。
具体来说,我们将首先全面研究HIV-1衣壳与各种
参与HIV-1核输入的细胞因子(Aim 1)。使用可解高阶CA集合,
重组核孔蛋白,我们将定义帽蛋白-核孔蛋白结合的生物化学和结构基础,
为接下来的研究打下基础。然后,我们将建立一个NuPOD库,
和组成的复杂性,以确定HIV-1核输入的关键决定因素和相关的
病毒衣壳和NPC的重塑(目的2)。这些NuPOD将使用多种类型的
位于DNA-折纸通道上指定位置的具有可调尺寸的核孔蛋白,
刚度系统地改变NuPOD设计并分析所得的NuPOD-衣壳对接,
插入将有助于理解HIV-1核输入分子水平细节。此外,我们将验证
我们使用基于细胞的病毒学实验的关键发现(目标3)。总的来说,我们希望这个项目能创造
强大的工具,不仅有助于确定艾滋病毒进入核的机制,而且使我们能够探索
许多其他病毒的核运输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenxiang Lin其他文献
Chenxiang Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenxiang Lin', 18)}}的其他基金
DNA nanotechnology enabled high-precision membrane engineering
DNA 纳米技术实现高精度膜工程
- 批准号:
10622748 - 财政年份:2023
- 资助金额:
$ 5.74万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10490880 - 财政年份:2021
- 资助金额:
$ 5.74万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10688712 - 财政年份:2021
- 资助金额:
$ 5.74万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10676822 - 财政年份:2021
- 资助金额:
$ 5.74万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10794022 - 财政年份:2021
- 资助金额:
$ 5.74万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10322398 - 财政年份:2021
- 资助金额:
$ 5.74万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10402986 - 财政年份:2021
- 资助金额:
$ 5.74万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10559534 - 财政年份:2021
- 资助金额:
$ 5.74万 - 项目类别:
A Nanomechanical Toolkit to Guide Membrane Structure and Dynamics
指导膜结构和动力学的纳米机械工具包
- 批准号:
10378021 - 财政年份:2019
- 资助金额:
$ 5.74万 - 项目类别:
Generating nuclear pore complex mimics with DNA origami
用 DNA 折纸生成核孔复合体模拟物
- 批准号:
8621296 - 财政年份:2014
- 资助金额:
$ 5.74万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 5.74万 - 项目类别:
Standard Grant