Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
基本信息
- 批准号:10559534
- 负责人:
- 金额:$ 53.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdultAreaArterial Fatty StreakArteriesAtherosclerosisBiochemicalBiologyBlood VesselsBlood flowCardiacCell LineCellsCollaborationsCryoelectron MicroscopyCytoskeletonDNADataDevelopmentDevicesDiameterDiseaseElementsEmbryonic DevelopmentEndoglinEndothelial CellsEndotheliumEventExtracellular DomainFamilyFoundationsG-Protein-Coupled ReceptorsGenesHeart ValvesIn VitroInflammationIntercellular JunctionsKDR geneKnock-outLeadLearningLiquid substanceMammalsMechanicsMechanoreceptorsMediatingMediatorMedicineModelingMolecularMolecular ConformationMusMyosin ATPaseNanotechnologyPECAM1 genePathway interactionsPatternPhysiologicalPhysiologyPlayPredispositionProcessProtein ConformationProteinsPublishingRoleSignal PathwaySignal TransductionSpecific qualifier valueTestingTreesVascular Endothelial CellVisualizationWorkalpha-latrotoxin receptorbone morphogenetic protein receptorscadherin 5conformational conversionexperimental studyin vivolymphatic valvemalformationmechanical forcemechanical loadmechanotransductionmembernanodevicenotch proteinnovelpostnatalprotein complexresponseshear stress
项目摘要
Project Summary
This project aims to understand in molecular detail how fluid shear stress acting on endothelial
cells triggers mechanical activation of signaling pathways at cell-cell junctions. Published data
show that shear stress activates a PECAM1-dependent signaling pathway, Notch signaling and
Alk1-Endoglin-Smad1/5 signaling, all of which occur at and depend on cell-cell contacts. These
pathways play major roles in vascular embryonic development, postnatal physiology and adult
disease. However, much remains to be learned about molecular mechanisms. The proposed
work is based on two recent advances in our labs. First, we have recently identified latrophilins
(LPHNs, also known as ADGRLs), members of the adhesion G protein coupled receptors
family, as key upstream mediators of shear activation of all three of these pathways. Second,
we have developed a new nanodevice that utilizes DNA origami to apply defined mechanical
tension to proteins. Aim 1 will investigate (1) the molecular mechanisms by which LPHNs
mediate the effects of shear stress on junctional signaling and (2) determine the role of LPHN2
in vascular development and function in vivo by doing endothelial-specific knockout in mice.
Aim 2 will use the DNA origami device to apply defined tension to PECAM1 and visualize
protein conformation change via cryoEM. These experiments will allow us to determine the
effect of applied force on PECAM’s structural transitions. Together, the project will provide new
understanding at unprecedented depth concerning how endothelial cell-cell junctional proteins
respond to mechanical force generated by shear stress.
.
项目摘要
本项目旨在从分子水平详细了解流体剪切应力如何作用于内皮细胞,
细胞在细胞-细胞连接处触发信号传导途径的机械活化。公布数据
显示剪切应力激活PECAM 1依赖性信号传导途径,Notch信号传导,
Alk 1-Endoglin-Smad 1/5信号传导,所有这些都发生在并依赖于细胞-细胞接触。这些
血管通路在胚胎发育、出生后生理和成年中起重要作用
疾病然而,还有很多关于分子机制的知识有待了解。拟议
这项工作是基于我们实验室的两项最新进展。首先,我们最近发现了亲latrophilins
(LPHN,也称为ADGRL),粘附G蛋白偶联受体的成员
家族,作为剪切激活所有这三种途径的关键上游介质。第二、
我们已经开发出一种新的纳米装置,利用DNA折纸,
蛋白质的张力目的1:研究(1)LPHNs的分子机制
介导剪切应力对连接信号传导的影响;(2)确定LPHN 2的作用
在血管发育和功能在体内通过做内皮特异性敲除小鼠。
目标2将使用DNA折纸装置对PECAM 1施加规定的张力,
通过cryoEM观察蛋白质构象变化。这些实验将使我们能够确定
施加力对PECAM结构转变的影响。该项目将提供新的
对内皮细胞-细胞连接蛋白
响应于由剪切应力产生的机械力。
.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenxiang Lin其他文献
Chenxiang Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenxiang Lin', 18)}}的其他基金
DNA nanotechnology enabled high-precision membrane engineering
DNA 纳米技术实现高精度膜工程
- 批准号:
10622748 - 财政年份:2023
- 资助金额:
$ 53.34万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10793845 - 财政年份:2021
- 资助金额:
$ 53.34万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10490880 - 财政年份:2021
- 资助金额:
$ 53.34万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10688712 - 财政年份:2021
- 资助金额:
$ 53.34万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10676822 - 财政年份:2021
- 资助金额:
$ 53.34万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10794022 - 财政年份:2021
- 资助金额:
$ 53.34万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10322398 - 财政年份:2021
- 资助金额:
$ 53.34万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10402986 - 财政年份:2021
- 资助金额:
$ 53.34万 - 项目类别:
A Nanomechanical Toolkit to Guide Membrane Structure and Dynamics
指导膜结构和动力学的纳米机械工具包
- 批准号:
10378021 - 财政年份:2019
- 资助金额:
$ 53.34万 - 项目类别:
Generating nuclear pore complex mimics with DNA origami
用 DNA 折纸生成核孔复合体模拟物
- 批准号:
8621296 - 财政年份:2014
- 资助金额:
$ 53.34万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 53.34万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 53.34万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 53.34万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 53.34万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 53.34万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 53.34万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 53.34万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 53.34万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 53.34万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 53.34万 - 项目类别: