Statistical atlases of brain tumor MRI:do imaging phenotypes predict progression?

脑肿瘤 MRI 统计图谱:成像表型能否预测进展?

基本信息

  • 批准号:
    7369127
  • 负责人:
  • 金额:
    $ 34.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Statistical atlases, and associated image analysis methods, have found widespread use in several neuroimaging fields, presenting a powerful way to integrate diverse imaging information, correlate it with genetic and clinical measurements, understand effects of disease on brain structure and function, and construct diagnostic tools. This proposal will combine statistical image analysis, deformable registration, and biophysical modeling approaches to an integrated framework for constructing and clinically using statistical atlases from brain tumor patients. Emphasis is placed on gliomas, which have very poor prognosis due to cancer infiltration beyond the visible tumor boundary. Accordingly, the ultimate clinical goal of this study is to identify subtle imaging characteristics of brain tissue that is likely to be infiltrated by tumor, as well as of tissue that is likely to present recurrence in relatively shorter time period. This will be achieved by studying the multi-modal imaging phenotypes of healthy and pathologic tissues in conjunction with spatial information, including the spatial pattern of the tumor and the proximity of malignant tissue to white matter fiber pathways, and by correlating these phenotypes with clinical information, including tumor recurrence. The hypothesis is that signal and spatial information together will be able to identify brain tissues that are likely to later present recurrence. The main technical challenges that will be overcome are 1) development of computationally efficient biophysical models of tumor growth, diffusion, and mass effect; 2) development of deformable registration methods that will allow us to co-register tumor-bearing brain images and build a population-based atlas-the main challenges here are to estimate the appropriate tumor parameters as well as the location of peri-tumor anatomy that is typically confounded by edema, infiltration and extreme deformations; and 3) development of machine learning methods for characterizing subtle abnormalities of brain tissue, and for identifying tissue that is likely to present recurrence after resection and treatment. Pilot studies on the feasibility of this approach to larger clinical studies will be performed on a database of brain MR images obtained from glioma patients via a rich and extensive acquisition protocol, including perfusion, diffusion tensor imaging, spectroscopy, and conventional imaging.
描述(由申请人提供):统计地图集和相关的图像分析方法已广泛用于几个神经成像领域,提供了一种强大的方法来整合各种成像信息,将其与遗传和临床测量相关联,了解疾病对大脑结构和功能的影响,并构建诊断工具。该提案将结合联合收割机统计图像分析,可变形注册,和生物物理建模方法的综合框架,用于构建和临床使用脑肿瘤患者的统计图谱。重点放在神经胶质瘤上,由于癌症浸润超过可见的肿瘤边界,其预后非常差。因此,本研究的最终临床目标是识别可能被肿瘤浸润的脑组织以及可能在相对较短的时间内出现复发的组织的细微成像特征。这将通过结合空间信息研究健康和病理组织的多模态成像表型来实现,包括肿瘤的空间模式和恶性组织与白色纤维通路的接近度,并通过将这些表型与临床信息(包括肿瘤复发)相关联来实现。假设是信号和空间信息一起将能够识别可能稍后出现复发的脑组织。将克服的主要技术挑战是:1)发展计算效率高的肿瘤生长、扩散和质量效应的生物物理模型; 2)开发可变形配准方法,使我们能够共同配准肿瘤脑图像并建立基于人群的图谱-这里的主要挑战是估计适当的肿瘤参数以及肿瘤位置-肿瘤解剖学通常被水肿、浸润和极端变形混淆;以及3)开发机器学习方法,用于表征脑组织的细微异常,并用于识别在切除和治疗后可能出现复发的组织。将在通过丰富而广泛的采集协议(包括灌注、扩散张量成像、光谱学和常规成像)从胶质瘤患者获得的脑部MR图像数据库上对这种方法在更大规模临床研究中的可行性进行试点研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Davatzikos其他文献

Christos Davatzikos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Davatzikos', 18)}}的其他基金

Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 34.45万
  • 项目类别:
The Neuroimaging Brain Chart Software Suite
神经影像脑图软件套件
  • 批准号:
    10581015
  • 财政年份:
    2023
  • 资助金额:
    $ 34.45万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10625442
  • 财政年份:
    2022
  • 资助金额:
    $ 34.45万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10421222
  • 财政年份:
    2022
  • 资助金额:
    $ 34.45万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10696100
  • 财政年份:
    2020
  • 资助金额:
    $ 34.45万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10263220
  • 财政年份:
    2020
  • 资助金额:
    $ 34.45万
  • 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
  • 批准号:
    10825403
  • 财政年份:
    2020
  • 资助金额:
    $ 34.45万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10475286
  • 财政年份:
    2020
  • 资助金额:
    $ 34.45万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10028746
  • 财政年份:
    2020
  • 资助金额:
    $ 34.45万
  • 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
  • 批准号:
    10839623
  • 财政年份:
    2017
  • 资助金额:
    $ 34.45万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了