Analyzing Complex Healthcare Data to Determine Causality of Observed Drug Effects

分析复杂的医疗数据以确定观察到的药物作用的因果关系

基本信息

  • 批准号:
    7940855
  • 负责人:
  • 金额:
    $ 41.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2013-09-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Epidemiologic analyses of health care data can provide critical evidence on the effectiveness and safety of therapeutics. This is particularly vital during the transition from the point of regulatory approval through the early marketing of new drugs, a time when physicians, regulators and payers are all struggling with incomplete data. Health plans pay for these drugs without knowing how their effectiveness and safety compares with established alternatives, as new compounds are tested against placebos rather than active agents, and tested only in selected patients. Non-randomized studies in large healthcare databases can provide fast and less costly evidence on drug effects. However, conventional adjustment methods that rely on a small number of investigator-specified confounders often fail and may produce biased results. We propose and have preliminary evidence that employing modern medical informatics algorithms that structure and search databases to empirically identify thousands of new covariates. These will then enter established propensity score-based models and so make far more effective use of the information contained in health care databases and electronic medical records (EMRs), resulting in more valid causal interpretations of treatment effects. We will: - Develop algorithms that make greater use of information contained in longitudinal claims and EMR databases by empirically identifying thousands of potential confounders. The performance of these approaches will be evaluated in 6 example studies encompassing recent drug safety and comparative effectiveness problems, and will be implemented in multiple large claims databases supplemented by such data as lab values and EMR information in subgroups. -- Develop novel methods for confounding adjustment based on textual information found in EMRs. -- Expand the newly developed mining algorithms into a framework that integrates distributed database networks with uneven information content, similar to the Sentinel Network recently initiated by FDA. This project is likely to produce groundbreaking results at the interface of medicine, biomedical informatics, and epidemiologic methods. After completion of this project a library of documented and validated algorithms will be available to significantly improve confounder control in a range of healthcare databases. The theoretical foundation and the ready-to-use algorithms will likely lead to a fundamental shift in how databases contribute to the fast and accurate assessment of newly-marketed medications.
描述(由申请人提供): 卫生保健数据的流行病学分析可以为治疗的有效性和安全性提供关键证据。在从监管批准到新药早期上市的过渡期间,这一点尤为重要,此时医生,监管机构和付款人都在努力处理不完整的数据。健康计划支付这些药物的费用,但不知道它们的有效性和安全性与现有替代品相比如何,因为新化合物是针对安慰剂而不是活性剂进行测试的,并且只在选定的患者中进行测试。大型医疗保健数据库中的非随机研究可以提供快速且成本更低的药物作用证据。然而,传统的调整方法,依赖于少量的干扰指定的混杂因素往往失败,并可能产生偏倚的结果。 我们提出并有初步的证据表明,采用现代医学信息学算法,结构和搜索数据库,以经验确定数千个新的协变量。然后,这些将进入建立的基于倾向评分的模型,从而更有效地利用医疗保健数据库和电子病历(EMR)中包含的信息,从而对治疗效果进行更有效的因果解释。我们将: - 开发算法,通过经验识别数千个潜在的混杂因素,更好地利用纵向索赔和EMR数据库中包含的信息。这些方法的性能将在6项包含近期药物安全性和比较有效性问题的示例研究中进行评价,并将在多个大型索赔数据库中实施,这些数据库由亚组的实验室值和EMR信息等数据补充。 --根据EMR中的文本信息开发新的混杂调整方法。 --将新开发的挖掘算法扩展为一个框架,该框架集成了信息内容不均匀的分布式数据库网络,类似于FDA最近发起的Sentinel Network。 这个项目很可能在医学、生物医学信息学和流行病学方法的界面上产生开创性的结果。完成本项目后,将提供一个记录和验证算法的库,以显著改善一系列医疗保健数据库中的混淆控制。理论基础和现成的算法可能会导致数据库如何有助于快速准确地评估新上市药物的根本转变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sebastian G. Schneeweiss其他文献

Sebastian G. Schneeweiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sebastian G. Schneeweiss', 18)}}的其他基金

New approaches to safety monitoring of novel systemic treatments for atopic dermatitis in clinical practice and underrepresented populations
在临床实践和代表性不足的人群中对特应性皮炎的新型全身治疗进行安全监测的新方法
  • 批准号:
    10339592
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
New approaches to safety monitoring of novel systemic treatments for atopic dermatitis in clinical practice and underrepresented populations
在临床实践和代表性不足的人群中对特应性皮炎的新型全身治疗进行安全监测的新方法
  • 批准号:
    10559698
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
Randomized Cardiovascular Trials Duplicated Using Prospective Longitudinal Insurance Claims: Applying Techniques of Epidemiology (RCT DUPLICATE)
使用前瞻性纵向保险索赔重复的随机心血管试验:应用流行病学技术(RCT DUPLICATE)
  • 批准号:
    10606588
  • 财政年份:
    2019
  • 资助金额:
    $ 41.8万
  • 项目类别:
Randomized Cardiovascular Trials Duplicated Using Prospective Longitudinal Insurance Claims: Applying Techniques of Epidemiology (RCT DUPLICATE)
使用前瞻性纵向保险索赔重复的随机心血管试验:应用流行病学技术(RCT DUPLICATE)
  • 批准号:
    9898456
  • 财政年份:
    2019
  • 资助金额:
    $ 41.8万
  • 项目类别:
Randomized Cardiovascular Trials Duplicated Using Prospective Longitudinal Insurance Claims: Applying Techniques of Epidemiology (RCT DUPLICATE)
使用前瞻性纵向保险索赔重复的随机心血管试验:应用流行病学技术(RCT DUPLICATE)
  • 批准号:
    10392863
  • 财政年份:
    2019
  • 资助金额:
    $ 41.8万
  • 项目类别:
Assessment of Treatment Effects in High-Dimensional, Routine Care Claims Data
高维常规护理索赔数据中的治疗效果评估
  • 批准号:
    8037863
  • 财政年份:
    2010
  • 资助金额:
    $ 41.8万
  • 项目类别:
Analyzing Complex Healthcare Data to Determine Causality of Observed Drug Effects
分析复杂的医疗数据以确定观察到的药物作用的因果关系
  • 批准号:
    8143550
  • 财政年份:
    2009
  • 资助金额:
    $ 41.8万
  • 项目类别:
Antidepressant Use and Suicidality: Comparative Safety in Children and Adults
抗抑郁药的使用和自杀:儿童和成人的相对安全性
  • 批准号:
    7929307
  • 财政年份:
    2009
  • 资助金额:
    $ 41.8万
  • 项目类别:
Analyzing Complex Healthcare Data to Determine Causality of Observed Drug Effects
分析复杂的医疗数据以确定观察到的药物作用的因果关系
  • 批准号:
    7767483
  • 财政年份:
    2009
  • 资助金额:
    $ 41.8万
  • 项目类别:
Effectiveness studies with securely pooled healthcare data and adjusted analyses
通过安全汇总的医疗数据和调整后的分析进行有效性研究
  • 批准号:
    7938849
  • 财政年份:
    2009
  • 资助金额:
    $ 41.8万
  • 项目类别:

相似海外基金

Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
  • 批准号:
    2649903
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
  • 批准号:
    475572
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10559690
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10437156
  • 财政年份:
    2022
  • 资助金额:
    $ 41.8万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10277514
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10462646
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10631239
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10809977
  • 财政年份:
    2021
  • 资助金额:
    $ 41.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了