The Biomechanics of morphogenesis in the frog
青蛙形态发生的生物力学
基本信息
- 批准号:8059722
- 负责人:
- 金额:$ 29.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAdoptedAffectAgeArchitectureAutomobile DrivingBackBehaviorBiologicalBiomechanicsBiomedical EngineeringCell ShapeCellsCellular biologyComplementConfocal MicroscopyCongenital AbnormalityCouplingCytoskeletonDNA Sequence RearrangementDevelopmentDevelopmental BiologyDorsalElementsEmbryoEngineeringEquilibriumEventF-ActinFailureFeedbackFutureGene ExpressionGenerationsGeneticGerm LayersGoalsGrantHumanImaging TechniquesIntercalated CellMeasuresMechanicsMesoderm CellMethodsMicrosurgeryModelingMolecularMorphogenesisMovementMyosin Type IINeural Tube DefectsNeural tubeOutcomePathway interactionsPatternProcessProductionPropertyRanaRegulationResistanceResolutionRoleShapesSourceStructureTechniquesTestingTissue EngineeringTissuesTractionVariantWorkXenopus laevisbaseblastomere structurecell behaviorcell motilityembryo tissuefeedinggastrulationinnovationinsightintercalationknock-downmeetingsmolecular scalemultidisciplinaryphysical stateprotein complexprotein functionpublic health relevanceresponsesuccesstooltumor progressiontumorigenesis
项目摘要
DESCRIPTION (provided by applicant): The goal of this proposal is to apply a multi-scale analysis of the mechanics of convergent extension, identifying biomechanical mechanisms that regulate cell shape and drive mediolateral cell behaviors, establish passive tissue properties such as stiffness as well as active processes that generate forces of extension, and how passive mechanics and active force generating processes are coordinated within the frog embryo. We will use an established toolkit consisting of three elements: 1) the aquatic frog Xenopus laevis for direct modulation of protein function and gene expression; 2) high resolution confocal microscopy to visualize cell behaviors, cytoskeletal dynamics, and tissue architecture; and 3) biophysical methods for applying strains, measuring tissue stiffness and force production. Studies outlined in this proposal will answer: 1) How do embryonic cells use actomyosin to physically generate force, change shape, and direct movement during convergent extension? To understand how movements are physically controlled we will take a "bottom-up" analysis of F-actin in the cortex of mesodermal cells as these cells initiate cell shape changes and adopt mediolateral intercalation behaviors. 2) What are the cell and molecular mechanisms underlying bulk tissue stiffness and tissue elongation forces during convergent extension? Our characterization of stiffness of embryonic tissues during gastrulation and axis extension has revealed both broad regulation of stiffness as the embryo ages as well as precise control over stiffness from one germ layer to the next. We propose to test the role of the physical state of the F-actin cytoskeleton in regulating of tissue stiffness and force-production as dorsal tissues converge and extend. 3) What are the physical mechanisms coordinating cell intercalation and stiffness during convergent extension? We hypothesize that gastrulation relies on a proper balance of forces from the elongating dorsal axis and resistance from surrounding tissues. To test this we propose to construct finite element based models to investigate these interactions and test qualitative predictions of our working models. These models will serve to both demonstrate the plausibility of simple mechanical feed-back mechanisms as well as predict the outcome of experimental manipulations. This work will complement ongoing efforts to identify the molecular regulators of morphogenesis by providing underlying biophysical principles for new hypotheses and bioengineering tools to test them. The significance of our work extends beyond defining the mechanical conditions and forces that convert mediolateral cell intercalation into large-scale convergent extension to allow a more complete understanding of the contribution of tissue mechanics to birth defects, to understand the role of tissue mechanics in oncogenesis, and to provide fundamental physical principles for future tissue engineers.
PUBLIC HEALTH RELEVANCE: The goal of this proposal is to understand the physical mechanisms by which actomyosin dynamics drive cell shape changes, generate traction forces, establish passive tissue properties such as stiffness, active force production by convergence and extension, and how passive mechanics and active forces shape a vertebrate embryo. The significance of our work extends beyond defining the mechanical conditions and their role in early development to provide fundamental physical principles for future tissue engineers, allow a more complete understanding of the contribution of tissue mechanics to birth defects, and to understand the role of tissue mechanics in oncogenesis.
描述(由申请人提供):本提案的目标是对会聚伸展的力学进行多尺度分析,识别调节细胞形状和驱动内侧细胞行为的生物力学机制,建立被动组织特性,例如硬度以及产生伸展力的主动过程,以及被动力学和主动力产生过程如何在青蛙胚胎内协调。我们将使用一个由三个要素组成的既定工具包:1)水生蛙非洲爪蟾用于直接调节蛋白质功能和基因表达; 2) 高分辨率共聚焦显微镜,用于可视化细胞行为、细胞骨架动力学和组织结构; 3) 用于施加应变、测量组织硬度和力产生的生物物理方法。该提案中概述的研究将回答:1)胚胎细胞如何利用肌动球蛋白在会聚延伸过程中物理产生力、改变形状和指导运动?为了了解运动是如何物理控制的,我们将对中胚层细胞皮质中的 F-肌动蛋白进行“自下而上”分析,因为这些细胞启动细胞形状变化并采取中外侧嵌入行为。 2)会聚伸展过程中大块组织刚度和组织伸长力的细胞和分子机制是什么?我们对原肠胚形成和轴延伸过程中胚胎组织硬度的表征揭示了随着胚胎老化对硬度的广泛调节以及对从一个胚层到下一个胚层的硬度的精确控制。我们建议测试 F-肌动蛋白细胞骨架的物理状态在调节背侧组织会聚和伸展时组织硬度和力产生中的作用。 3)在会聚延伸过程中协调细胞嵌入和刚度的物理机制是什么?我们假设原肠胚形成依赖于伸长的背轴的力和周围组织的阻力的适当平衡。为了测试这一点,我们建议构建基于有限元的模型来研究这些相互作用并测试我们工作模型的定性预测。这些模型将用于证明简单机械反馈机制的合理性以及预测实验操作的结果。这项工作将通过为新假设和测试它们的生物工程工具提供基本的生物物理原理来补充正在进行的识别形态发生分子调节剂的努力。我们工作的意义不仅仅在于定义将内侧细胞嵌入转化为大规模会聚延伸的机械条件和力,以便更全面地了解组织力学对出生缺陷的贡献,了解组织力学在肿瘤发生中的作用,并为未来的组织工程师提供基本物理原理。
公共健康相关性:本提案的目标是了解肌动球蛋白动力学驱动细胞形状变化、产生牵引力、建立被动组织特性(例如硬度)、通过收敛和延伸产生主动力的物理机制,以及被动力学和主动力如何塑造脊椎动物胚胎。我们工作的意义不仅限于定义机械条件及其在早期发育中的作用,还为未来的组织工程师提供基本物理原理,使人们能够更全面地了解组织力学对出生缺陷的贡献,并了解组织力学在肿瘤发生中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LANCE A. DAVIDSON其他文献
LANCE A. DAVIDSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LANCE A. DAVIDSON', 18)}}的其他基金
Mechanical Control of Mesenchymal-to-Epithelial Transition
间充质到上皮转变的机械控制
- 批准号:
9336427 - 财政年份:2016
- 资助金额:
$ 29.12万 - 项目类别:
US National Symposium on Frontiers in Biomechanics: Mechanics of Development
美国国家生物力学前沿研讨会:发展力学
- 批准号:
8204038 - 财政年份:2011
- 资助金额:
$ 29.12万 - 项目类别:
Biophysics of development buffering: Temperature as a tool to study how the cytos
发育缓冲的生物物理学:温度作为研究细胞如何发育的工具
- 批准号:
7976887 - 财政年份:2010
- 资助金额:
$ 29.12万 - 项目类别:
Biophysics of development buffering: Temperature as a tool to study how the cytos
发育缓冲的生物物理学:温度作为研究细胞如何发育的工具
- 批准号:
8106442 - 财政年份:2010
- 资助金额:
$ 29.12万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 29.12万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 29.12万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 29.12万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 29.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 29.12万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 29.12万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 29.12万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 29.12万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 29.12万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 29.12万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




