Explore fundamental aspects of neurotransmission with multifunctional nanosensor
使用多功能纳米传感器探索神经传递的基本方面
基本信息
- 批准号:8146810
- 负责人:
- 金额:$ 234万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcculturationAcidsAddressBehaviorBiological ProcessBrainClinicCognitionComplexComprehensionCouplingDetectionDiagnosticDisciplineElectrophysiology (science)ElementsImageIn SituInvestigationKineticsLinkMeasurementModificationNanotechnologyNeuraxisNeuronsNeurosciencesNeurotransmitter ReceptorNeurotransmittersNoisePhysiologyProteinsQuantum DotsReportingResearchResolutionRetrievalScientific Advances and AccomplishmentsScientistSignal TransductionStructureSurfaceSynapsesSynaptic CleftSynaptic TransmissionSynaptic VesiclesSynaptic plasticityTestingTherapeuticTimeTransplantationVesicleWorkabstractingaptamerin vivointerestnanosensorsnervous system disorderneurotransmissionneurotransmitter releasepatch clamppostsynapticpresynapticpublic health relevancequantumreceptorspatiotemporalsuccesstooltrafficking
项目摘要
DESCRIPTION (Provided by the applicant)
Abstract: The brain is an extraordinarily complex network made of billions of neurons. The synapse, the contact point between neurons, has been the centre of interest for decades. Starting with Ram¿n Cajal, scientists have been borrowing tools from other disciplines to study this tiny, but crucial structure. The breakthrough truly came after the introduction of electrophysiology, which allows the measurement of neuronal activity at an extremely high signal-to-noise ratio. It became clear that synaptic transmission is conducted via the presynaptic release of neurotransmitters from synaptic vesicles and the subsequent activation of postsynaptic receptors. So far, changes in synaptic transmission have generally been attributed to the modification of postsynaptic receptors. Nevertheless, newly emerged evidence has demonstrated that the receptors do not act autonomously and synaptic vesicles indeed make significant contribution to synaptic plasticity. Despite great interest and effort, the lack of a direct and precise measurement obstructs further investigation of synaptic vesicles and thus impedes a complete comprehension of such mutual modulation. Borrowing from nanotechnology, I devised a single-vesicle imaging approach using quantum dot (Qdot), which for the first time provides superior spatiotemporal resolution matching or even exceeding that of patch-clamp recording. With this original tool, I unveiled the existence, kinetics and regulatory mechanisms of an unconventional mode of vesicle reuse in mammalian central synapses. Here, I propose that synaptic modulation is composed of a sequence of coordinated and equally profound changes at both pre- and postsynaptic terminals. To test it, I will develop ""smart"" nanosensors made of Qdots and aptamers, a new class of synthetic oligonucleic acids. These nanosensors can precisely target designated synaptic structures or proteins and simultaneously report orchestrated pre- and postsynaptic changes in situ. To demonstrate the power of this revolutionary tool, I will deploy it to address some fundamental and long-standing questions in synaptic physiology, such as the coupling of vesicle reacidification and refilling after retrieval, the fluctuation of neurotransmitter concentration around the synaptic cleft, and the acculturation of presynaptic vesicles and postsynaptic receptors. Because Qdots are ideal for in vivo imaging, I will screen for aptamers that can deliver these nanosensors to designated synapses in the intact brain such that synaptic transmission can be studied in defined neuronal circuits. The success of this project promises a quantum leap in our understanding of neurotransmission. The technical and scientific advances made from this work can be readily transplanted to other biomedical fields because vesicles turnover and surface receptor trafficking are widely involved in almost all biological processes. Moreover, both Qdots and aptamers are modular units that can be linked with all kinds of diagnostic or therapeutic molecules. Therefore, this project has a broad impact beyond neuroscience. .
Public Health Relevance: Synapse is the most essential element for transmitting information in brain neuronal network which is responsible for our cognition and daily behavior. By inventing and deploying multifunctional nanoporbes, we will investigate the most fundamental aspects of synaptic transmission including synaptic vesicles, neurotransmitters and receptors in mammalian central nervous system. As these components of synapses evidently became abnormal in most neurological disorders, our finding will bridge the gap between basic and clinic research for better understanding, detection, characterization, and treatment of neurological disorders.
描述(由申请人提供)
摘要:大脑是一个由数十亿个神经元组成的极其复杂的网络。突触是神经元之间的接触点,几十年来一直是人们关注的中心。从拉姆·卡哈尔开始,科学家们一直在借用其他学科的工具来研究这个微小但至关重要的结构。真正的突破是在引入电生理学之后实现的,它允许以极高的信噪比测量神经元活动。很明显,突触传递是通过突触小泡突触前释放神经递质以及随后激活突触后受体来进行的。到目前为止,突触传递的变化通常归因于突触后受体的修饰。然而,新出现的证据表明,受体不能自主发挥作用,突触小泡确实对突触可塑性做出了重大贡献。尽管人们极大的兴趣和努力,但缺乏直接和精确的测量阻碍了对突触小泡的进一步研究,从而阻碍了对这种相互调节的完全理解。借用纳米技术,我设计了一种使用量子点(Qdot)的单囊泡成像方法,该方法首次提供了与膜片钳记录相匹配甚至超过膜片钳记录的卓越时空分辨率。借助这个原创工具,我揭示了哺乳动物中央突触中非常规的囊泡再利用模式的存在、动力学和调节机制。在这里,我提出突触调制由突触前和突触后末端的一系列协调且同样深刻的变化组成。为了测试它,我将开发由 Qdot 和适体(一类新型合成寡核酸)制成的“智能”纳米传感器。这些纳米传感器可以精确地瞄准指定的突触结构或蛋白质,并同时报告精心策划的突触前和突触后原位变化。为了展示这一革命性工具的力量,我将利用它来解决突触生理学中一些基本且长期存在的问题,例如囊泡再酸化和恢复后重新填充的耦合、突触间隙周围神经递质浓度的波动以及突触前囊泡和突触后受体的文化适应。由于 Qdot 非常适合体内成像,因此我将筛选能够将这些纳米传感器传递到完整大脑中指定突触的适体,以便可以在定义的神经元回路中研究突触传递。该项目的成功预示着我们对神经传递的理解将发生质的飞跃。这项工作取得的技术和科学进步可以很容易地移植到其他生物医学领域,因为囊泡周转和表面受体运输广泛涉及几乎所有生物过程。此外,Qdot和适体都是模块化单元,可以与各种诊断或治疗分子连接。因此,该项目具有神经科学之外的广泛影响。 。
公共卫生相关性:突触是大脑神经元网络中传递信息的最重要元素,负责我们的认知和日常行为。通过发明和部署多功能纳米孔,我们将研究突触传递的最基本方面,包括哺乳动物中枢神经系统中的突触小泡、神经递质和受体。由于突触的这些组成部分在大多数神经系统疾病中明显变得异常,我们的发现将弥合基础研究和临床研究之间的差距,以更好地理解、检测、表征和治疗神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Zhang其他文献
Qi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Zhang', 18)}}的其他基金
Food Assistance, Diet and Body Weight Status among WIC Eligible Children
WIC 符合条件的儿童的食品援助、饮食和体重状况
- 批准号:
9226113 - 财政年份:2017
- 资助金额:
$ 234万 - 项目类别:
O Brother, Where Art Thou - Interrogating Glutamate Co-transmission in Dopaminergic Neurons at Single-vesicle Level using Cell Reprograming and CRISPR
O Brother,你在哪里 - 使用细胞重编程和 CRISPR 在单囊泡水平探究多巴胺能神经元中的谷氨酸共传递
- 批准号:
9182701 - 财政年份:2016
- 资助金额:
$ 234万 - 项目类别:
Riboswitch and Ribozyme Dynamics at Atomic Resolution
原子分辨率下的核糖开关和核酶动力学
- 批准号:
9267501 - 财政年份:2015
- 资助金额:
$ 234万 - 项目类别:
Riboswitch and Ribozyme Dynamics at Atomic Resolution
原子分辨率下的核糖开关和核酶动力学
- 批准号:
9061748 - 财政年份:2015
- 资助金额:
$ 234万 - 项目类别:
Modulation of Synaptic Vesicles in Neurotransmission, Plasticity and Addiction
突触小泡在神经传递、可塑性和成瘾中的调节
- 批准号:
8094858 - 财政年份:2010
- 资助金额:
$ 234万 - 项目类别:
Modulation of Synaptic Vesicles in Neurotransmission, Plasticity and Addiction
突触小泡在神经传递、可塑性和成瘾中的调节
- 批准号:
8321510 - 财政年份:2010
- 资助金额:
$ 234万 - 项目类别:
Modulation of Synaptic Vesicles in Neurotransmission, Plasticity and Addiction
突触小泡在神经传递、可塑性和成瘾中的调节
- 批准号:
8142223 - 财政年份:2010
- 资助金额:
$ 234万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 234万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 234万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 234万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 234万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 234万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 234万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 234万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 234万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 234万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 234万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




