Structure and Function of Mammalian Copper Transporters
哺乳动物铜转运蛋白的结构和功能
基本信息
- 批准号:9353441
- 负责人:
- 金额:$ 33.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAddressAerobicAlzheimer&aposs DiseaseArchitectureBehaviorBindingBiological AssayBiologyCarrier ProteinsCell CompartmentationCell physiologyCellsCellular MembraneCellular biologyCessation of lifeChemicalsChemistryCircadian RhythmsClinicalComplexCopperCreutzfeldt-Jakob SyndromeCryoelectron MicroscopyCrystallizationCuprozinc Superoxide DismutaseDimensionsDimerizationDiseaseDrug Metabolic DetoxicationElectron MicroscopyExcretory functionFormulationGoalsHepatolenticular DegenerationHomeostasisHumanIn VitroInternationalIonsLengthLifeLipid BilayersLiverLocationMammary glandMapsMediatingMembraneMenkes Kinky Hair SyndromeMetabolismMetalsModelingMolecularMolecular ChaperonesMovementMutationN-terminalNegative StainingNerve DegenerationNeuraxisOrganismOxidation-ReductionParkinson DiseasePathway interactionsPharmacotherapyPhosphorylationPhosphotransferasesPlatinumProcessPropertyProteinsPumpReactive Oxygen SpeciesResearchResistanceRespirationRoleStructureSuperoxide DismutaseSystemUrsidae FamilyVariantWilson disease proteinWorkassay developmentbasecancer therapyconformational conversioncopper transporter 1copper-transporting ATPasedimerelectron crystallographyextracellularhuman diseasein vitro Assayin vivoinsightmetal metabolismmutantnanobodiesnervous system disordernovelorexin A receptorparticleprotein transportreconstitutionreconstructionscaffoldsolutestructural biologytraffickingtumoruptake
项目摘要
SUMMARY
At a chemical level, life is inconceivable without metals. This is reflected in the fact that imbalances in
metal homeostasis invariably cause disease. Yet, metals are understudied, and their actions are largely
taken for granted, in part because the complexity, and systemic integration of metal metabolism and
strict cellular reliance on metals pose significant challenges to the exploration of these important
contributors to cellular function. Addressing this shortcoming, our research aims to understand the
molecular mechanisms that govern the cellular acquisition, distribution and excretion of one particular
metal: copper. Although present in only small amounts, the coordination and redox chemistry of copper
ions have become indispensible for cells because copper ions enable respiration and detoxification of
reactive oxygen species – two fundamental processes that no aerobically growing organism can live
without.
Despite much progress in recent years, many fundamental question related to copper metabolism
remain unanswered. Through work proposed in this application, we will answer the perplexing question
how cells can beat the impossible odds of delivering copper to its final targets, we will develop an in
vitro system that reconstitutes cellular copper uptake, and we will make major advances towards
determining a structure of the copper pumping Wilson ATPase, ATP7B, that despite intense
international efforts has remained an elusive target for structural studies. Aim 1, will be focused on the
structure and function of the human copper importer hCTR1. Extending our previous work, we will
determine the structure of hCTR1 in complex with CCS, the copper chaperone for Cu,Zn- superoxide
dismutase 1, and develop an in vitro assay that will allow us to study mechanistic aspects of copper
transport under controlled conditions. Aim 2, will focus on visualizing structure function correlates of the
copper pump ATP7B mutations of which are the causative agent in Wilson Disease.
Our studies will fill critical gaps in understanding of copper transport across cellular membranes and will
advance a new paradigm posing that membrane scaffolding is essential for efficient intracellular copper
distribution. Moreover, the anticipated results will make important contributions to understanding the
molecular mechanisms underlying disorders that are associated with aberrant copper metabolism such
as Wilson's disease, neurodegenerative conditions such as Parkinsons, Alzheimer's and Creutzfeldt-
Jakob Disease, and tumor-resistance to platinum-based chemotherapeutics.
总结
在化学水平上,没有金属,生命是不可想象的。这反映在以下事实上:
体内金属平衡总是导致疾病。然而,金属是研究不足,他们的行动在很大程度上是
被认为是理所当然的,部分原因是金属代谢的复杂性和系统整合,
严格的细胞对金属的依赖对这些重要的
对细胞功能的贡献。针对这一缺陷,我们的研究旨在了解
控制细胞获取、分配和排泄一种特定的
金属:铜。尽管铜的存在量很小,但铜的配位和氧化还原化学
铜离子已经成为细胞不可或缺的,因为铜离子使呼吸和解毒,
活性氧-两个基本的过程,没有有氧生长的有机体可以生活
没有.
尽管近年来研究取得了很大进展,但许多与铜代谢相关的基础性问题仍然存在,
仍然没有答案。通过本申请中提出的工作,我们将回答这个令人困惑的问题
我们将开发一种方法来研究电池如何克服将铜输送到最终目标的不可能的困难
体外系统,重建细胞铜摄取,我们将取得重大进展,
确定铜泵威尔逊ATP酶,ATP 7 B的结构,尽管强烈
国际努力仍然是结构研究的一个难以捉摸的目标。目标1,将重点放在
人类铜输入者hCTR 1的结构和功能。为了扩展我们以前的工作,我们将
确定与CCS复合的hCTR 1的结构,CCS是Cu,Zn-超氧化物的铜伴侣
歧化酶1,并开发一种体外测定,使我们能够研究铜的机制方面
在受控条件下运输。目标2,将集中在可视化的结构功能相关的
铜泵ATP 7 B突变是威尔逊病的病原体。
我们的研究将填补理解铜跨细胞膜转运的关键空白,
提出了一种新的范式,提出膜支架对于有效的细胞内铜是必不可少的
分布此外,预期的结果将为理解
与异常铜代谢相关的潜在疾病的分子机制,
如威尔逊氏病,神经退行性疾病,如帕金森氏病,阿尔茨海默氏病和克罗伊茨费尔特-
雅各布病和肿瘤对铂类化疗药物的耐药性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINZENZ UNGER其他文献
VINZENZ UNGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINZENZ UNGER', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Research Grant