Structure and Function of Mammalian Copper Transporters
哺乳动物铜转运蛋白的结构和功能
基本信息
- 批准号:9353441
- 负责人:
- 金额:$ 33.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAddressAerobicAlzheimer&aposs DiseaseArchitectureBehaviorBindingBiological AssayBiologyCarrier ProteinsCell CompartmentationCell physiologyCellsCellular MembraneCellular biologyCessation of lifeChemicalsChemistryCircadian RhythmsClinicalComplexCopperCreutzfeldt-Jakob SyndromeCryoelectron MicroscopyCrystallizationCuprozinc Superoxide DismutaseDimensionsDimerizationDiseaseDrug Metabolic DetoxicationElectron MicroscopyExcretory functionFormulationGoalsHepatolenticular DegenerationHomeostasisHumanIn VitroInternationalIonsLengthLifeLipid BilayersLiverLocationMammary glandMapsMediatingMembraneMenkes Kinky Hair SyndromeMetabolismMetalsModelingMolecularMolecular ChaperonesMovementMutationN-terminalNegative StainingNerve DegenerationNeuraxisOrganismOxidation-ReductionParkinson DiseasePathway interactionsPharmacotherapyPhosphorylationPhosphotransferasesPlatinumProcessPropertyProteinsPumpReactive Oxygen SpeciesResearchResistanceRespirationRoleStructureSuperoxide DismutaseSystemUrsidae FamilyVariantWilson disease proteinWorkassay developmentbasecancer therapyconformational conversioncopper transporter 1copper-transporting ATPasedimerelectron crystallographyextracellularhuman diseasein vitro Assayin vivoinsightmetal metabolismmutantnanobodiesnervous system disordernovelorexin A receptorparticleprotein transportreconstitutionreconstructionscaffoldsolutestructural biologytraffickingtumoruptake
项目摘要
SUMMARY
At a chemical level, life is inconceivable without metals. This is reflected in the fact that imbalances in
metal homeostasis invariably cause disease. Yet, metals are understudied, and their actions are largely
taken for granted, in part because the complexity, and systemic integration of metal metabolism and
strict cellular reliance on metals pose significant challenges to the exploration of these important
contributors to cellular function. Addressing this shortcoming, our research aims to understand the
molecular mechanisms that govern the cellular acquisition, distribution and excretion of one particular
metal: copper. Although present in only small amounts, the coordination and redox chemistry of copper
ions have become indispensible for cells because copper ions enable respiration and detoxification of
reactive oxygen species – two fundamental processes that no aerobically growing organism can live
without.
Despite much progress in recent years, many fundamental question related to copper metabolism
remain unanswered. Through work proposed in this application, we will answer the perplexing question
how cells can beat the impossible odds of delivering copper to its final targets, we will develop an in
vitro system that reconstitutes cellular copper uptake, and we will make major advances towards
determining a structure of the copper pumping Wilson ATPase, ATP7B, that despite intense
international efforts has remained an elusive target for structural studies. Aim 1, will be focused on the
structure and function of the human copper importer hCTR1. Extending our previous work, we will
determine the structure of hCTR1 in complex with CCS, the copper chaperone for Cu,Zn- superoxide
dismutase 1, and develop an in vitro assay that will allow us to study mechanistic aspects of copper
transport under controlled conditions. Aim 2, will focus on visualizing structure function correlates of the
copper pump ATP7B mutations of which are the causative agent in Wilson Disease.
Our studies will fill critical gaps in understanding of copper transport across cellular membranes and will
advance a new paradigm posing that membrane scaffolding is essential for efficient intracellular copper
distribution. Moreover, the anticipated results will make important contributions to understanding the
molecular mechanisms underlying disorders that are associated with aberrant copper metabolism such
as Wilson's disease, neurodegenerative conditions such as Parkinsons, Alzheimer's and Creutzfeldt-
Jakob Disease, and tumor-resistance to platinum-based chemotherapeutics.
概括
在化学水平上,没有金属的寿命是不可想象的。这反映在以下事实中
金属稳态总是引起疾病。然而,金属被理解,它们的行为在很大程度上是
认为是理所当然的,部分是因为金属代谢的复杂性和全身整合
严格的蜂窝浮雕金属对这些重要的探索构成了重大挑战
细胞功能的贡献者。解决这一缺点,我们的研究旨在了解
控制一种特定的细胞获取,分布和排泄的分子机制
金属:铜。尽管仅出现少量,但铜的配位化学和氧化还原化学
由于铜离子能够呼吸和解毒,因此离子变得不可或缺
活性氧种 - 两个没有有氧生长有机体可以生存的两个基本过程
没有。
尽管近年来取得了很多进展,但许多基本问题与铜代谢有关
保持没有答复。通过本申请中提出的工作,我们将回答一个令人困惑的问题
细胞如何打败将铜输送到其最终目标的不可能的几率,我们将开发一个
重构蜂窝铜吸收的体外系统,我们将在
确定铜泵的结构Wilson ATPase,ATP7B,渴望强烈
国际努力仍然是结构研究的难以捉摸的目标。 AIM 1将重点放在
人类铜进口商HCTR1的结构和功能。扩展我们以前的工作,我们将
确定与CC的复合物中HCTR1的结构,CC,Cu,Zn-超氧化物的铜伴侣伴侣
验证酶1,并进行体外评估,这将使我们能够研究铜的机械方面
在受控条件下运输。 AIM 2,将专注于可视化结构功能的相关性
铜泵ATP7B突变是威尔逊病的病因。
我们的研究将填补了解跨细胞膜铜运输的关键空白,并将
推进新的范式,该范式是膜脚手架对于有效的细胞内铜至关重要
分配。此外,预期的结果将为理解
与异常铜代谢相关的疾病的分子机制
作为威尔逊氏病,神经退行性疾病,例如帕金森氏症,阿尔茨海默氏症和克鲁兹菲尔特 -
雅各布疾病,对基于铂的化学治疗药的肿瘤抗性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINZENZ UNGER其他文献
VINZENZ UNGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINZENZ UNGER', 18)}}的其他基金
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7942227 - 财政年份:2009
- 资助金额:
$ 33.09万 - 项目类别:
ANTECEDENT BIOMARKERS FOR AD; THE ADULT CHILDREN STUDY
AD 的先行生物标志物;
- 批准号:
8476417 - 财政年份:2005
- 资助金额:
$ 33.09万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7479334 - 财政年份:2004
- 资助金额:
$ 33.09万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7268958 - 财政年份:2004
- 资助金额:
$ 33.09万 - 项目类别: