The Role of Mono-ADP-Ribosylation by PARP14 in Radioresistance
PARP14 的单 ADP 核糖基化在放射抗性中的作用
基本信息
- 批准号:9206998
- 负责人:
- 金额:$ 34.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:ADP Ribose TransferasesADP ribosylationAddressAdenosine Diphosphate RiboseAffectBiochemicalBiological AssayCellsCellular AssayClinicalDNADNA DamageDNA Double Strand BreakDNA RepairDNA Repair GeneDevelopmentDouble Strand Break RepairEnzymesExcisionFamily memberGenetic RecombinationGenomic approachHypersensitivityImmunofluorescence ImmunologicIonizing radiationLesionMalignant NeoplasmsMeasuresMediatingMetabolismMolecularMono(ADP-Ribose) TransferasesMono-SMusMutationNonhomologous DNA End JoiningOutcomePoly Adenosine Diphosphate RibosePost-Translational Protein ProcessingProcessProteinsRad51 recombinaseRadiationRadiation Induced DNA DamageRadiation ToleranceRadiation induced double strand breakRadiation therapyRadiation-Sensitizing AgentsRadioresistanceRadiosensitizationReactionRegulationReportingResistanceRoleTestingToxic effectTreatment EfficacyWorkXenograft procedurebasecancer cellcancer recurrencecancer therapychromatin immunoprecipitationclinically relevantdesignexperimental studyhomologous recombinationimprovedinhibitor/antagonistinnovationkillingsknock-downneoplastic cellnovelnovel therapeuticspublic health relevanceradiation effectradiation resistanceradiation responseradioresistantradiosensitiverepairedresponsesingle moleculetranscriptome sequencingtreatment effecttumor
项目摘要
DESCRIPTION (provided by applicant): Ionizing Radiation kills cancer cells by generating DNA damage. Resistance to Ionizing Radiation is generally determined by DNA repair mechanisms that can repair radiation-induced DNA damage. The most toxic effect of radiation is represented by the formation of double stranded DNA breaks. These breaks can be repaired by Homologous Recombination, and Non-Homologous End Joining DNA repair mechanisms. Inhibition of these mechanisms results in increased radiosensitivity since repair of radiation-induced double strand breaks is blocked. Thus, understanding the molecular mechanisms of double strand break repair is essential for designing novel radiosensitization therapies. We have recently uncovered a novel mechanism that regulates radioresistance, centered on the protein PARP14. PARP14 is a mono-ADP-ribosyltransferase, which unlike its well-known cousin PARP1 is unable to catalyze poly-ADP-ribose chain formation but can only transfer a single molecule of ADP-ribose to substrates. Mono-ADP-ribosylation is a still mysterious post-translational modification, and its functions in the cell are poorly characterized. Or preliminary results presented here show that PARP14 promotes repair of double strand breaks by activating Homologous Recombination DNA repair. Moreover, our preliminary results presented here indicate a mechanism for this activation: PARP14 mono-ADP-ribosylates the recombination factor RAD51 to promote RAD51 removal from D-loops thus allowing D-loop extension past the break and complete the recombination reaction. Thus, our work shows that PARP14 inhibition results in radiosensitivity by downregulating Homologous Recombination-dependent repair of radiation-induced double strand DNA breaks. In this proposal, we test the hypothesis that PARP14 promotes the repair of radiation-induced double strand DNA breaks by Homologous Recombination, through RAD51 mono-ADP-ribosylation. We will employ a comprehensive, integrative approach to study: 1) the impact of PARP14 on the repair of radiation-induced DNA damage by Homologous Recombination and other DNA repair mechanisms, and 2) the role of RAD51 mono- ADP-ribosylation by PARP14 in repair of radiation-induced double strand breaks. Our study is highly innovative since it addresses a novel, previously unrecognized function of mono- ADP-ribosylation in radioresistance. Our work will unravel how mono-ADP-ribosylation by PARP14 promotes radiation resistance, and describe novel radiosensitization approaches, based on PARP14 inhibition.
描述(申请人提供):电离辐射通过产生DNA损伤来杀死癌细胞。对电离辐射的抗性通常由DNA修复机制决定,DNA修复机制可以修复辐射引起的DNA损伤。辐射的最大毒性效应表现为双链DNA断裂的形成。这些断裂可以通过同源重组和非同源末端连接DNA修复机制来修复。由于辐射诱导的双链断裂的修复被阻断,因此抑制这些机制会导致辐射敏感性的增加。因此,了解双链断裂修复的分子机制对于设计新的放射增敏疗法是至关重要的。我们最近发现了一种以PARP14蛋白为核心的调节辐射抗性的新机制。PARP14是一种单-ADP-核糖基转移酶,与其同源酶PARP1不同,它不能催化多聚ADP-核糖链的形成,而只能将单分子ADP-核糖转移到底物上。单-ADP-核糖化是一种神秘的翻译后修饰,其在细胞中的功能尚不清楚。或初步结果显示,PARP14通过激活同源重组DNA修复促进双链断裂的修复。此外,我们的初步结果表明了这种激活的机制:PARP14单-ADP-核糖化重组因子RAD51,以促进RAD51从D-环中移除,从而允许D-环延伸超过断裂并完成重组反应。因此,我们的工作表明,PARP14抑制通过下调辐射诱导的双链DNA断裂的同源重组依赖的修复而导致辐射敏感性。在这个建议中,我们检验了PARP14通过RAD51单-ADP-核糖化通过同源重组促进辐射诱导的双链DNA断裂修复的假设。我们将采用一种全面、综合的方法来研究:1)PARP14通过同源重组和其他DNA修复机制在辐射诱导的DNA损伤修复中的作用;2)PARP14通过RAD51单-ADP核糖化在辐射诱导的双链断裂修复中的作用。我们的研究具有很高的创新性,因为它解决了一个新的,以前未知的单-ADP-核糖化在辐射抗性中的功能。我们的工作将揭示PARP14的单-ADP核糖化如何提高辐射抗性,并描述基于PARP14抑制的新的放射增敏方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Lucian Moldovan其他文献
George Lucian Moldovan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Lucian Moldovan', 18)}}的其他基金
The Role of Mono-ADP-Ribosylation by PARP14 in Radioresistance
PARP14 的单 ADP 核糖基化在放射抗性中的作用
- 批准号:
10594033 - 财政年份:2016
- 资助金额:
$ 34.07万 - 项目类别:
The Role of Mono-ADP-Ribosylation by PARP14 in Radioresistance
PARP14 的单 ADP 核糖基化在放射抗性中的作用
- 批准号:
10457195 - 财政年份:2016
- 资助金额:
$ 34.07万 - 项目类别:
相似海外基金
Control of genomic integrity and virulence of Aspergillus fumigatus by ADP-ribosylation.
通过 ADP-核糖基化控制烟曲霉的基因组完整性和毒力。
- 批准号:
MR/X007472/1 - 财政年份:2023
- 资助金额:
$ 34.07万 - 项目类别:
Fellowship
Understanding the impact of DNA ADP-ribosylation on telomere function in cancer cells
了解 DNA ADP-核糖基化对癌细胞端粒功能的影响
- 批准号:
10751121 - 财政年份:2023
- 资助金额:
$ 34.07万 - 项目类别:
Composition and function of telomeric multi-protein complexes and their regulation by ADP-ribosylation
端粒多蛋白复合物的组成和功能及其ADP-核糖基化的调节
- 批准号:
2748032 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Studentship
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10524783 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Regulation of DNA repair by histone ADP-ribosylation
组蛋白 ADP 核糖基化调节 DNA 修复
- 批准号:
MR/W017350/1 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Research Grant
Regulation and function of site-specific protein poly-ADP-ribosylation
位点特异性蛋白质聚 ADP 核糖基化的调控和功能
- 批准号:
10668492 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
ADP-ribosylation of DNA in Mycobacterium tuberculosis
结核分枝杆菌 DNA 的 ADP-核糖基化
- 批准号:
BB/W016613/1 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Research Grant
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10610165 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Role of Transcription Factor ADP-ribosylation in Breast Cancer Biology
转录因子 ADP-核糖基化在乳腺癌生物学中的作用
- 批准号:
10593900 - 财政年份:2021
- 资助金额:
$ 34.07万 - 项目类别:
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10389853 - 财政年份:2021
- 资助金额:
$ 34.07万 - 项目类别:














{{item.name}}会员




