Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
基本信息
- 批准号:9789878
- 负责人:
- 金额:$ 297.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAnatomyAxonBehaviorBiologicalBrainBrain imagingBrain regionCalibrationCell DensityCellular StructuresCognitionDevelopmentDiffusionDiffusion Magnetic Resonance ImagingElectron MicroscopyElementsEngineeringGenerationsGoalsGoldHeterogeneityHumanHybridsImageIndividualLengthMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsMicroscopeMicroscopicMorphologic artifactsMorphologyNeuronal PlasticityNeuronsPathologyPerformancePhysiologic pulseResearchResolutionSamplingSignal TransductionSiteStructureSystemTechnologyTimeTissuesTranslatingValidationVariantWorkbiophysical modelbrain tissueconnectomedesignexperiencefunctional plasticitygray matterhuman imagingimprovedin vivoinstrumentmicroCTmicroscopic imagingneural circuitnext generationrelating to nervous systemtechnology developmenttechnology validationtooltractographyvalidation studieswhite matter
项目摘要
SUMMARY
We present Connectome 2.0, the next-generation human MRI scanner for imaging structural anatomy and
connectivity spanning the microscopic, mesoscopic and macroscopic scales. This work builds upon our expertise
in engineering the first human Connectome MRI scanner with 300 mT/m maximum gradient strength (Gmax), the
highest ever achieved for a human system, for the Human Connectome Project (HCP). The goal of the HCP was
to map the macroscopic structural connections of the in vivo healthy adult human brain using diffusion
tractography. While this instrument has made important contributions to our understanding of macroscale
connectional topology, our experience with the scanner over the last seven years has taught us that dedicated
high-gradient performance scanners can also acquire a rich array of diffusion measurements that provide
unparalleled in vivo assessment of neural tissue microstructure, such as the relative size and packing density of
cells and axons. However, the current Connectome instrument is limited in its ability to resolve the full range of
length scales needed to probe the microscopic and mesoscopic structure of the brain, due to basic design
limitations, important technical elements, and biological interactions with the large rapidly switching gradients.
Our experience with the first generation Connectome scanner and realization of its limitations motivates our
multi-site proposal for the next generation human Connectome MRI scanner (Connectome 2.0) to achieve
sensitivity to a broader range of cellular and axonal size scales, morphologies, and interconnections represented
throughout the brain.
Our goal here is to translate our initial experience into building a one-of-a-kind high-slew rate, ultra-
high-gradient strength MRI scanner that is optimized for the study of neural tissue microstructure and neural
circuits across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies
of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly
doubling the current Gmax to 500 mT/m and tripling the maximum slew rate to 600 T/m/s; (2) pushing the limits
of the RF receive coils and gradient characterization to enable maximum sensitivity with greatly reduced
artifacts using real-time eddy current corrected dMRI acquisitions; (3) developing new pulse sequences to
achieve the highest diffusion- and spatial-resolution ever achieved in vivo; and (4) calibrating the
measurements obtained from this next generation instrument through systematic validation of the diffusion
microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales. We
envision creating the ultimate diffusion MRI machine capable of addressing the BRAIN 2025 mandate to image
across scales, from the microscopic scale needed to probe cellular heterogeneity and plasticity, to the
mesoscopic scale for enumerating the distinctions in cortical structure and connectivity that define cyto- and
myeloarchitechtonic boundaries, to improvements in estimates of macroscopic connectivity.
摘要
我们介绍了Connectome 2.0,下一代人类MRI扫描仪,用于成像结构解剖和
跨越微观、中观和宏观尺度的连通性。这项工作建立在我们专业知识的基础上
在设计第一台人类Connectome MRI扫描仪时,最大梯度强度(GMAX)为300 mT/m,
人类系统有史以来最高的成就,人类连接体项目(HCP)。HCP的目标是
利用弥散成像技术绘制健康成人脑内宏观结构联系图
轨道照相术。虽然这一工具对我们理解宏观尺度做出了重要贡献
连接拓扑,我们在过去七年中使用扫描仪的经验告诉我们,专用
高梯度性能扫描仪还可以获取丰富的扩散测量结果,从而提供
无与伦比的体内神经组织微结构评估,如相对大小和堆积密度
细胞和轴突。然而,当前的Connectome仪器在解决全范围的
由于基本的设计,探测大脑的微观和介观结构所需的长度标尺
限制、重要的技术要素,以及与大的快速转换梯度的生物相互作用。
我们使用第一代Connectome扫描仪的经验和对其局限性的认识激励了我们的
建议多站点实现下一代人类Connectome核磁共振扫描仪(Connectome 2.0)
对更大范围的细胞和轴突大小、形态和相互连接的敏感性
贯穿整个大脑。
我们的目标是将我们最初的经验转化为构建一种独一无二的高转换率、超
专为研究神经组织微结构和神经功能而优化的高梯度强度磁共振扫描仪
跨越多个长度尺度的电路。为了最大限度地提高活体显微镜的分辨率以供研究
对于活着的人脑,我们将把扩散分辨率极限推向前所未有的水平:(1)近
将目前的GMAX提高一倍至500Mt/m,将最大回转速度提高两倍至600T/m/S;(2)突破限制
的射频接收线圈和梯度特性,以实现最大的灵敏度,同时大大降低
使用实时涡流校正dMRI采集的伪影;(3)开发新的脉冲序列以
达到体内有史以来最高的扩散和空间分辨率;以及(4)校准
通过系统验证扩散获得的下一代仪器的测量结果
高保真模体和体外脑组织中的微结构度量逐渐精细。我们
设想创造能够满足大脑2025年成像任务的终极扩散磁共振成像机器
从探索细胞异质性和可塑性所需的微观尺度,到
用于列举定义细胞和细胞的皮质结构和连接性差异的介观尺度
骨髓结构边界,到宏观连通性估计的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER J. BASSER其他文献
PETER J. BASSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER J. BASSER', 18)}}的其他基金
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
10458018 - 财政年份:2018
- 资助金额:
$ 297.47万 - 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
10532483 - 财政年份:2018
- 资助金额:
$ 297.47万 - 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
10226118 - 财政年份:2018
- 资助金额:
$ 297.47万 - 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
10005356 - 财政年份:2018
- 资助金额:
$ 297.47万 - 项目类别:
Imaging Water Diffusion in the Brain and in Other Soft T
大脑和其他软 T 中水扩散的成像
- 批准号:
6991174 - 财政年份:
- 资助金额:
$ 297.47万 - 项目类别:
Physical-chemical Aspects Of Cell And Tissue Excitabilit
细胞和组织兴奋性的物理化学方面
- 批准号:
6677330 - 财政年份:
- 资助金额:
$ 297.47万 - 项目类别:
Imaging Water Diffusion in the Brain and in Other Soft Tissues
大脑和其他软组织中的水扩散成像
- 批准号:
8736807 - 财政年份:
- 资助金额:
$ 297.47万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 297.47万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 297.47万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 297.47万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 297.47万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 297.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 297.47万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 297.47万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 297.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 297.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 297.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)