Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
基本信息
- 批准号:10005356
- 负责人:
- 金额:$ 312.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAnatomyAxonBehaviorBiologicalBrainBrain imagingBrain regionCalibrationCell DensityCellular StructuresCognitionDevelopmentDiffusionDiffusion Magnetic Resonance ImagingElectron MicroscopyElementsEngineeringGenerationsGoalsGoldHeterogeneityHumanHybridsImageIndividualLengthMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsMicroscopeMicroscopicMorphologic artifactsMorphologyNeuronal PlasticityNeuronsPathologyPerformancePhysiologic pulseResearchResolutionSamplingSignal TransductionSiteStructureSystemTechnologyTimeTissuesTranslatingValidationVariantWorkbiophysical modelbrain tissueconnectomedesignexperiencefunctional plasticitygray matterhuman imagingimprovedin vivoinstrumentmicroCTmicroscopic imagingneural circuitnext generationrelating to nervous systemtechnology developmenttechnology validationtooltractographyvalidation studieswhite matter
项目摘要
SUMMARY
We present Connectome 2.0, the next-generation human MRI scanner for imaging structural anatomy and
connectivity spanning the microscopic, mesoscopic and macroscopic scales. This work builds upon our expertise
in engineering the first human Connectome MRI scanner with 300 mT/m maximum gradient strength (Gmax), the
highest ever achieved for a human system, for the Human Connectome Project (HCP). The goal of the HCP was
to map the macroscopic structural connections of the in vivo healthy adult human brain using diffusion
tractography. While this instrument has made important contributions to our understanding of macroscale
connectional topology, our experience with the scanner over the last seven years has taught us that dedicated
high-gradient performance scanners can also acquire a rich array of diffusion measurements that provide
unparalleled in vivo assessment of neural tissue microstructure, such as the relative size and packing density of
cells and axons. However, the current Connectome instrument is limited in its ability to resolve the full range of
length scales needed to probe the microscopic and mesoscopic structure of the brain, due to basic design
limitations, important technical elements, and biological interactions with the large rapidly switching gradients.
Our experience with the first generation Connectome scanner and realization of its limitations motivates our
multi-site proposal for the next generation human Connectome MRI scanner (Connectome 2.0) to achieve
sensitivity to a broader range of cellular and axonal size scales, morphologies, and interconnections represented
throughout the brain.
Our goal here is to translate our initial experience into building a one-of-a-kind high-slew rate, ultra-
high-gradient strength MRI scanner that is optimized for the study of neural tissue microstructure and neural
circuits across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies
of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly
doubling the current Gmax to 500 mT/m and tripling the maximum slew rate to 600 T/m/s; (2) pushing the limits
of the RF receive coils and gradient characterization to enable maximum sensitivity with greatly reduced
artifacts using real-time eddy current corrected dMRI acquisitions; (3) developing new pulse sequences to
achieve the highest diffusion- and spatial-resolution ever achieved in vivo; and (4) calibrating the
measurements obtained from this next generation instrument through systematic validation of the diffusion
microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales. We
envision creating the ultimate diffusion MRI machine capable of addressing the BRAIN 2025 mandate to image
across scales, from the microscopic scale needed to probe cellular heterogeneity and plasticity, to the
mesoscopic scale for enumerating the distinctions in cortical structure and connectivity that define cyto- and
myeloarchitechtonic boundaries, to improvements in estimates of macroscopic connectivity.
总结
我们介绍了Connectome 2.0,下一代人体MRI扫描仪,用于成像结构解剖学,
连通性跨越微观,介观和宏观尺度。这项工作建立在我们的专业知识之上
在设计第一台具有300 mT/m最大梯度强度(Gmax)的人类Connectome MRI扫描仪时,
人类连接组计划(Human Connectome Project,HCP)HCP的目标是
使用扩散映射活体健康成人大脑的宏观结构连接
纤维束成像虽然这一工具对我们理解宏观尺度作出了重要贡献,
连接拓扑结构,我们在过去七年的扫描仪经验告诉我们,
高梯度性能扫描仪还可以获得丰富的扩散测量阵列,
对神经组织微观结构的无与伦比的体内评估,例如神经组织的相对大小和堆积密度。
细胞和轴突。然而,当前的Connectome仪器在其分辨全范围的肿瘤的能力方面是有限的。
长度尺度需要探测大脑的微观和中观结构,由于基本设计
限制、重要的技术要素以及与大的快速切换梯度的生物相互作用。
我们使用第一代Connectome扫描仪的经验及其局限性的认识促使我们
下一代人体Connectome MRI扫描仪(Connectome 2.0)的多站点提案,以实现
对更广泛的细胞和轴突大小尺度、形态和相互连接的敏感性
在整个大脑中。
我们的目标是将我们的初步经验转化为建立一个独一无二的高转换速率,超
高梯度强度MRI扫描仪,优化用于神经组织微观结构和神经
电路跨越多个长度尺度。为了最大限度地提高这种活体显微镜的分辨率,
我们将把扩散分辨率极限推到前所未有的水平,
将电流Gmax加倍至500 mT/m,将最大转换速率加倍至600 T/m/s;(2)突破极限
RF接收线圈和梯度表征,以实现最大灵敏度,
使用实时涡流校正的dMRI采集伪影;(3)开发新的脉冲序列,
实现有史以来在体内实现的最高扩散和空间分辨率;以及(4)校准
通过扩散的系统验证,
显微结构指标在高保真幻影和离体脑组织在逐步精细的尺度。我们
设想创建能够解决大脑2025任务的最终扩散MRI机器,以成像
跨尺度,从探测细胞异质性和可塑性所需的微观尺度,
介观尺度,用于列举定义细胞和神经元的皮质结构和连接性的区别。
骨髓组织边界,改善宏观连通性的估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER J. BASSER其他文献
PETER J. BASSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER J. BASSER', 18)}}的其他基金
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
10458018 - 财政年份:2018
- 资助金额:
$ 312.8万 - 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
10532483 - 财政年份:2018
- 资助金额:
$ 312.8万 - 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
10226118 - 财政年份:2018
- 资助金额:
$ 312.8万 - 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
- 批准号:
9789878 - 财政年份:2018
- 资助金额:
$ 312.8万 - 项目类别:
Imaging Water Diffusion in the Brain and in Other Soft T
大脑和其他软 T 中水扩散的成像
- 批准号:
6991174 - 财政年份:
- 资助金额:
$ 312.8万 - 项目类别:
Physical-chemical Aspects Of Cell And Tissue Excitabilit
细胞和组织兴奋性的物理化学方面
- 批准号:
6677330 - 财政年份:
- 资助金额:
$ 312.8万 - 项目类别:
Imaging Water Diffusion in the Brain and in Other Soft Tissues
大脑和其他软组织中的水扩散成像
- 批准号:
8736807 - 财政年份:
- 资助金额:
$ 312.8万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 312.8万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 312.8万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 312.8万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 312.8万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 312.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 312.8万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 312.8万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 312.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 312.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 312.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)