Robust, scalable, and accurate discovery of mutational signatures

稳健、可扩展且准确的突变特征发现

基本信息

项目摘要

The mutational signatures inferred from tumor genome sequences have the potential to provide a record of environmental exposure and can give clues about the etiology of carcinogenesis. However, for inferred signatures to be biologically meaningful, each signature must accurately represent the contribution of different mutation types in each mutagenic process. Heuristic algorithms using non-negative matrix factorization (NMF) have primarily been used to discover mutational signatures. But these approaches are inflexible, non-robust, and require massive amounts of computation. The objective of the proposed project is to develop computationally efficient algorithms that, despite imperfect modeling assumptions, can discover biologically meaningful signatures. Aim 1 supports this objective by developing a new framework for scalable, easy-to-use, and accurate variational inference – a widely used approach to approximate Bayesian inference – that is applicable to mutational discovery models. Aim 2 develops statistical methods to extract biologically meaningful signatures from the inferences obtained using the proposed variational inference framework. The accuracy and statistical validity of the methods developed in Aims 1 and 2 is ensured through theoretical analysis and numerical experiments on synthetic and real data. Finally, Aim 3 improves upon the current understanding of mutational processes by (1) applying the methods developed in Aims 1 and 2 to a large Pan-Cancer dataset and (2) by developing a novel model that allows for the structured incorporation of single-base and double-base substitutions, and insertions and deletions in each signature. The proposed work is well-positioned to replace heuristics used for discovering meaningful representations of data, and so have long-term impact on how other genomic data types such as single-cell RNA-seq are analyzed. This work is also directly relevant to the NIGMS as it falls under “DNA and RNA metabolisms (repair)” since many mutational processes are related to aberrant DNA repair or “clock-like” molecular mechanisms that are associated with aging, which can be observed in histologically normal appearing tissue
从肿瘤基因组序列推断的突变特征有可能提供环境暴露的记录,并可以提供致癌病因学的线索。然而,对于具有生物学意义的推断特征,每个特征必须准确地表示每个诱变过程中不同突变类型的贡献。使用非负矩阵分解(NMF)的启发式算法主要用于发现突变签名。但这些方法是不灵活的,非鲁棒性的,并且需要大量的计算。该项目的目标是开发计算效率高的算法,尽管不完美的建模假设,可以发现生物学上有意义的签名。目标1支持这一目标,通过开发一个新的框架,可扩展的,易于使用的,准确的变分推理-一种广泛使用的方法来近似贝叶斯推理-这是适用于突变发现模型。目标2开发统计方法,从使用建议的变分推理框架获得的推理中提取生物学上有意义的签名。目标1和目标2中提出的方法的准确性和统计有效性通过对合成数据和真实的数据的理论分析和数值试验得到保证。最后,目标3通过(1)将目标1和2中开发的方法应用于大型泛癌症数据集,以及(2)开发一种新的模型,该模型允许在每个签名中结构化地掺入单碱基和双碱基取代以及插入和缺失,从而改善了目前对突变过程的理解。拟议的工作很好地取代了用于发现有意义的数据表示的分析学,因此对如何分析其他基因组数据类型(如单细胞RNA-seq)产生了长期影响。这项工作也与NIGMS直接相关,因为它福尔斯“DNA和RNA代谢(修复)”,因为许多突变过程与异常DNA修复或与衰老相关的“时钟样”分子机制有关,这可以在组织学正常的组织中观察到

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Huggins其他文献

Jonathan Huggins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Huggins', 18)}}的其他基金

Robust, scalable, and accurate discovery of mutational signatures
稳健、可扩展且准确的突变特征发现
  • 批准号:
    10491360
  • 财政年份:
    2021
  • 资助金额:
    $ 19.36万
  • 项目类别:
Robust, scalable, and accurate discovery of mutational signatures
稳健、可扩展且准确的突变特征发现
  • 批准号:
    10665756
  • 财政年份:
    2021
  • 资助金额:
    $ 19.36万
  • 项目类别:

相似国自然基金

Consequences of MALT1 mutation for B cell tolerance
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments
MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台
  • 批准号:
    2330628
  • 财政年份:
    2024
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Standard Grant
ESR1 mutation profiling identifies potential drivers of metastatic breast cancer
ESR1 突变分析确定了转移性乳腺癌的潜在驱动因素
  • 批准号:
    MR/X018199/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Research Grant
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
  • 批准号:
    BB/Z514305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Research Grant
EDGE CMT: Defining the cost of mutation in nuclear encoded tRNAs
EDGE CMT:定义核编码 tRNA 的突变成本
  • 批准号:
    2319796
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Standard Grant
The mechanism of oral carcinogenesis by FAT1 gene mutation
FAT1基因突变导致口腔癌的机制
  • 批准号:
    23K15977
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Challenge to create multigene families by simultaneous induction of tandem repeat expansion and mutation
通过同时诱导串联重复扩增和突变来创建多基因家族的挑战
  • 批准号:
    23K14172
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
  • 批准号:
    22KJ2450
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Epigenetic dependence of diffuse midline glioma with H3K27M mutation
具有 H3K27M 突变的弥漫性中线胶质瘤的表观遗传依赖性
  • 批准号:
    10736036
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
A reference-free computational algorithm for comprehensive somatic mosaic mutation detection
一种用于综合体细胞嵌合突变检测的无参考计算算法
  • 批准号:
    10662755
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
Somatic mutation rates in healthy aging
健康老龄化中的体细胞突变率
  • 批准号:
    10800911
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了