Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
基本信息
- 批准号:10374343
- 负责人:
- 金额:$ 69.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAffectAlgorithmsAnimal Disease ModelsAnimalsAreaArterial Fatty StreakAutopsyBolus InfusionCarotid Atherosclerotic DiseaseCharacteristicsCholesterolClinicClinicalConfocal MicroscopyContrast MediaDataDevicesDiseaseEuropeFeasibility StudiesFoundationsFrequenciesFutureGoalsGrowthHistologyHumanImageImaging DeviceImaging technologyIn VitroInfiltrationInfluentialsInjectionsInterventionIntravenousInvestigationKidney DiseasesLeadLifeLogistic RegressionsLogisticsMagnetic Resonance ImagingMalignant NeoplasmsMeasuresMicrobubblesMicrofluidicsModelingMorbidity - disease rateMyocardial InfarctionNamesNoiseOpticsOryctolagus cuniculusOutcomePathologyPerformancePhysiologic pulsePhysiologicalPilot ProjectsPlayPopulationPreventive treatmentProceduresROC CurveRadiationResolutionRiskRoleRuptureScanningSenile PlaquesSignal TransductionSpecificityStrokeStroke preventionSurrogate MarkersSystemTechniquesTestingUltrasonographyUnited StatesValidationWorkacute coronary syndromeangiogenesisanimal imagingatherosclerotic plaque ruptureclinical applicationclinical translationclinically relevantcontrast enhanceddensityhigh resolution imaginghigh riskhuman subjectimage reconstructionimaging approachimaging capabilitiesimaging probein vivoinnovationinnovative technologiesmicroCTmicroscopic imagingmortalityneovascularizationnovelpatient stratificationspatiotemporalstroke risktechnology developmenttomographytooltranslational goalultrasounduptakevasa vasorum
项目摘要
PROJECT SUMMARY
Acute coronary syndromes and strokes together constitute a leading cause of morbidity and mortality in the
United States and Europe, approximately 80% of which are caused by atherosclerotic plaque (AP) rupture.
Over the past decade, extensive efforts have been made to identify a rupture-prone AP. Among others,
infiltration of dense neovascularization arising from vasa vasorum (VV) into the AP core plays a critical role in
AP rupture. Postmortem studies revealed key involvement of VV in AP. However, a persistent lack of a
noninvasive, high-resolution imaging tool to longitudinally assess abnormal microvascular expansion remains a
critical barrier to adequate in-vivo investigation on how VV affects AP progression and contributes to eventual
rupture. To address this dire unmet need, we propose an innovative transcutaneous super resolution
ultrasound (SRU) imaging. The technology development in this project seeks to shift the current US imaging
approach in identifying microvessels of AP from “intravascular” to a “fully noninvasive transcutaneous” imaging
approach. This is only possible by achieving unprecedented high spatial resolution at large depth, breaking
acoustic diffraction limit of the ultrasound frequency that governs spatial resolution. Our group has performed
in-depth feasibility studies where SRU imaging successfully identified neomicrovessels in cholesterol-fed rabbit
AP, evaluated against µCT and histology. Additionally, areas requiring further technical optimization were
identified. Such technology developments and preliminary data thus far rigorously support our overarching
hypothesis that enhanced and optimized SRU will accurately stage plaque progression and identify rupture-
prone plaques by directly measuring VV changes with exquisite detail. To test the hypothesis, we will use a
well-established, clinically relevant cholesterol-fed rabbit AP rupture model, which has shown the most
similarity to human plaque pathology including VV neovascularization, to validate the novel SRU system to 1)
Successfully quantify changes in vessel density and 2) Identify rupture-prone AP. To achieve these goals, we
propose the following specific aims: 1) To develop enhanced SRU at high frequency using a commercial small
animal imaging probe 2) To determine if VV changes estimated by SRU correlate with AP progression and are
predictive of AP rupture. The immediate outcomes of the proposed work are an affordable noninvasive small
animal SRU imaging tool and it’s validation on a clinically relevant rabbit AP model, which also can be used for
other important small animal disease models, which are associated with microvessel abnormality such as
cancer angiogenesis and kidney diseases to name a few. With proper adaptations into a clinical mid frequency
probe and validation in clinical settings in future, this work will lead to our long-term translational goal to
integrate SRU in a facile manner into the current clinical standard of carotid duplex sonography that has shown
poor specificity to plaque vulnerability. This will help to effectively stratify patients at high risk of strokes and
guide adequate intervention/treatment options for stroke prevention, exerting highly influential clinical impact.
项目摘要
急性冠状动脉综合征和中风一起构成了发病率和死亡率的主要原因,
在美国和欧洲,约80%的动脉粥样硬化斑块(AP)破裂引起。
在过去的十年中,已经做出了广泛的努力来识别易破裂的AP。其中,
由血管(VV)产生的致密新生血管浸润入AP核心,在
前房破裂。尸检研究显示VV在AP中起关键作用。然而,持续缺乏
无创、高分辨率的成像工具,纵向评估异常微血管扩张仍然是一个
充分体内研究VV如何影响AP进展并有助于最终的关键障碍
破裂为了解决这一严重的未满足的需求,我们提出了一种创新的经皮超分辨率
超声(SRU)成像。该项目的技术开发旨在改变当前美国的成像方式
从“血管内”到“完全无创经皮”成像识别AP微血管的方法
approach.只有在大深度实现前所未有的高空间分辨率,才有可能实现这一目标,
控制空间分辨率的超声频率的声衍射极限。我们的团队已经完成了
深入可行性研究,其中SRU成像成功识别了胆固醇喂养家兔中的新生微血管
AP,根据µCT和组织学进行评价。此外,需要进一步技术优化的领域有
鉴定迄今为止,这些技术发展和初步数据严格支持我们的总体目标。
假设增强和优化的SRU将准确地对斑块进展进行分期并识别破裂-
通过直接测量VV的变化与精致的细节容易斑块。为了验证这个假设,我们将使用
一种成熟的、临床相关的胆固醇喂养兔AP破裂模型,该模型显示了最多的
与人类斑块病理学(包括VV新血管形成)相似,以验证新型SRU系统1)
成功量化血管密度变化和2)识别易破裂AP。为了实现这些目标,我们
提出以下具体目标:1)使用商业小型设备开发高频增强型SRU
动物成像探头2)为了确定SRU估计的VV变化是否与AP进展相关,
预测AP破裂。拟议工作的直接成果是一个负担得起的非侵入性小
动物SRU成像工具及其在临床相关兔AP模型上的验证,该模型也可用于
其他重要的小动物疾病模型,其与微血管异常相关,例如
癌症血管生成和肾脏疾病等等。通过适当的调整进入临床中频
在未来的临床环境中进行探索和验证,这项工作将导致我们的长期转化目标,
将SRU以一种简便的方式整合到目前的颈动脉双功超声检查的临床标准中,
对斑块易损性的特异性差。这将有助于有效地对中风高风险患者进行分层,
指导适当的干预/治疗方案,以预防中风,发挥高度影响力的临床影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANG KIM其他文献
KANG KIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANG KIM', 18)}}的其他基金
Development and Validation of a Multimodal Ultrasound- Based Biomarker for Myofascial Pain
基于多模态超声的肌筋膜疼痛生物标志物的开发和验证
- 批准号:
10579668 - 财政年份:2022
- 资助金额:
$ 69.46万 - 项目类别:
Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
- 批准号:
10557917 - 财政年份:2022
- 资助金额:
$ 69.46万 - 项目类别:
Prevent Unnecessary Carotid Intervention and Stroke using Noninvasive Transcutaneous Ultrasound Thermal Strain Imaging (US-TSI)
使用无创经皮超声热应变成像 (US-TSI) 预防不必要的颈动脉干预和中风
- 批准号:
10192822 - 财政年份:2020
- 资助金额:
$ 69.46万 - 项目类别:
Prevent Unnecessary Carotid Intervention and Stroke using Noninvasive Transcutaneous Ultrasound Thermal Strain Imaging (US-TSI)
使用无创经皮超声热应变成像 (US-TSI) 预防不必要的颈动脉干预和中风
- 批准号:
10630204 - 财政年份:2020
- 资助金额:
$ 69.46万 - 项目类别:
Prevent Unnecessary Carotid Intervention and Stroke using Noninvasive Transcutaneous Ultrasound Thermal Strain Imaging (US-TSI)
使用无创经皮超声热应变成像 (US-TSI) 预防不必要的颈动脉干预和中风
- 批准号:
10414794 - 财政年份:2020
- 资助金额:
$ 69.46万 - 项目类别:
Advanced High Resolution Rodent Ultrasound Imaging System
先进的高分辨率啮齿动物超声成像系统
- 批准号:
9494245 - 财政年份:2018
- 资助金额:
$ 69.46万 - 项目类别:
Noninvasive fat quantification of liver using ultrasound thermal strain imaging
使用超声热应变成像对肝脏进行无创脂肪定量
- 批准号:
8638587 - 财政年份:2014
- 资助金额:
$ 69.46万 - 项目类别:
Noninvasive fat quantification of liver using ultrasound thermal strain imaging
使用超声热应变成像对肝脏进行无创脂肪定量
- 批准号:
8815309 - 财政年份:2014
- 资助金额:
$ 69.46万 - 项目类别:
Noninvasive Monitoring of Tissue-engineered Constructs by US Elasticity Imaging
通过美国弹性成像对组织工程构建体进行无创监测
- 批准号:
8242005 - 财政年份:2011
- 资助金额:
$ 69.46万 - 项目类别:
Noninvasive Monitoring of Tissue-engineered Constructs by US Elasticity Imaging
通过美国弹性成像对组织工程构建体进行无创监测
- 批准号:
8093116 - 财政年份:2011
- 资助金额:
$ 69.46万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 69.46万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 69.46万 - 项目类别:
Standard Grant