Noninvasive Monitoring of Tissue-engineered Constructs by US Elasticity Imaging
通过美国弹性成像对组织工程构建体进行无创监测
基本信息
- 批准号:8093116
- 负责人:
- 金额:$ 22.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAnimal EuthanasiaAnimal ModelAnimalsArchitectureAreaBiocompatible MaterialsCellsCharacteristicsClinicClinicalDataDevelopmentElasticityElastinEvaluationExtracellular MatrixFeedbackFunctional ImagingGoalsGrowthHistologyHistopathologyImageImaging DeviceImaging TechniquesImplantIn SituIn VitroInfluentialsKnowledgeLaboratoriesMagnetic Resonance ImagingMeasurementMeasuresMechanicsMethodsModalityModelingMonitorNatural regenerationOrganPerformancePhasePolyurethanesProceduresProcessPropertyRattusRegenerative MedicineResearchResolutionSamplingShapesSpecimenStructureSupporting CellSurface PropertiesSystemTechniquesTimeTissue EngineeringTissuesTranslatingTranslationsUltrasonographyWeightWorkX-Ray Computed Tomographybasebiodegradable polymercell growthclinical applicationclinical practicedesignhuman subjectimaging modalityimprovedin vitro testingin vivoinnovationnovelprogramsrepairedresearch studyscaffoldsoft tissuetissue regenerationtissue support frametool
项目摘要
DESCRIPTION (provided by applicant): Non-invasively monitoring the extent of tissue scaffold degradation, cellular growth, and tissue development will greatly help tissue engineers to non-destructively evaluate candidate scaffold performance in vivo. Biodegradable polymer scaffolds are used to support cells and growing tissues until they are replaced by the body's own extracellular matrix (ECM). Two main challenges in creating the ideal biodegradable polymer scaffold are: (1) the scaffold must have a defined shape and porous internal architecture suitable for direct tissue ingrowths but with appropriate mechanical and degradation properties and (2) the scaffold must have the right surface properties to provide favorable conditions for cells to attach differentiate and lay down ECM. To design scaffolds which appropriately transfer their mechanical load over time to the in growing tissue, temporal data are required that verify the mechanical viability of the remodeling construct. Current analysis methods are destructive, requiring animal euthanasia and explanting the construct for histological and direct mechanical characterization. In addition, different samples are prepared and measured at varying times, but high growth deviation between specimens makes analysis difficult. Ideally, tissue engineers need a system that can non-invasively monitor growth in the same specimen over time. Other imaging methods, such as magnetic resonance imaging (MRI) and computed tomography (CT), provide internal scaffold structural information, but they are limited to providing only morphological information. Ultrasound easticity imaging (UEI) based on phase-sensitive speckle tracking can characterize the mechanical, structural, and functional change of the implanted engineered tissues at very high resolution and sensitivity. Local UEI offers the potential to radically improve the biomaterial scaffold design and engineered tissue growth techniques. The long term goal of this research program is to develop a novel noninvasive functional imaging modality in the field of tissue engineering and regenerative medicine. The objective of the current project is to evaluate UEI as noninvasive imaging tool to assess mechanical, structural, and functional characteristics of the scaffold degradation and tissue ingrowth. The specific aims are: (1) Establish the in vitro relationship between noninvasive UEI and the mechanical and structural characteristics of the biomaterial scaffold degradation. (2) Establish the in vivo relationship between noninvasive UEI and the mechanical, structural, and functional characteristics of simultaneous tissue growing and scaffold degradation. These specific aims will be evaluated using novel polyurethane-based soft tissue scaffolds with three different degradation rates. In-vivo feasibility will also be demonstrated using the rat abdominal repair model. If successful, UEI integrated into a commercial ultrasound scanner can also be rapidly translated into clinical practice since it is based upon novel processing of ultrasound data that can be obtained conveniently and non-invasively from human subjects
PUBLIC HEALTH RELEVANCE: Tissue Engineering is an emerging, interdisciplinary field which is full of promise for those in need of organ and tissue replacement and repair. However, some major limitations with the development and translation remained unsolved mainly due to the limitations of laboratory feedback capabilities, especially non-invasive assessment tool for the implants in animal study. Clinical application of tissue engineering treatments will also require the ability to non-invasively monitor functional tissue regeneration. The proposed ultrasound elasticity imaging technique will provide quantitative assessment and monitoring of the mechanical strength of the engineered tissue as it grows into the native tissue. This technique can be easily integrated into a commercial ultrasound scanner for real-time in-vivo animal study, significantly reducing the number of animals required in the study, and eventually as a clinical tool to monitor the tissue engineering treatments.
描述(由申请人提供):无创监测组织支架降解、细胞生长和组织发育的程度,将极大地帮助组织工程师非破坏性地评估候选支架在体内的性能。可生物降解聚合物支架用于支持细胞和生长中的组织,直到它们被人体自身的细胞外基质(ECM)所取代。创造理想的可生物降解聚合物支架的两个主要挑战是:(1)支架必须具有明确的形状和适合直接组织生长的多孔内部结构,但具有适当的机械和降解特性;(2)支架必须具有合适的表面特性,为细胞附着、分化和铺设ECM提供有利条件。为了设计适当地将机械负荷随时间转移到生长中的组织的支架,需要时间数据来验证重塑结构的机械可行性。目前的分析方法是破坏性的,需要动物安乐死和解释结构的组织学和直接力学表征。此外,在不同的时间制备和测量不同的样品,但样品之间的高生长偏差使分析困难。理想情况下,组织工程师需要一种系统,可以无创地监测同一标本的生长情况。其他成像方法,如磁共振成像(MRI)和计算机断层扫描(CT),提供支架内部结构信息,但它们仅限于提供形态学信息。基于相敏散斑跟踪的超声易性成像(UEI)能够以非常高的分辨率和灵敏度表征植入工程组织的力学、结构和功能变化。局部UEI提供了从根本上改善生物材料支架设计和工程组织生长技术的潜力。这项研究计划的长期目标是在组织工程和再生医学领域开发一种新的无创功能成像方式。当前项目的目的是评估UEI作为无创成像工具来评估支架降解和组织长入的机械、结构和功能特征。具体目的是:(1)在体外建立无创UEI与生物材料支架降解的力学和结构特性之间的关系。(2)建立无创UEI与同时组织生长和支架降解的力学、结构和功能特征之间的体内关系。这些具体目标将评估使用新型聚氨酯为基础的软组织支架具有三种不同的降解率。体内可行性也将通过大鼠腹部修复模型进行验证。如果成功,UEI集成到商用超声扫描仪中也可以迅速转化为临床实践,因为它基于对超声数据的新处理,可以方便地、无创地从人体受试者身上获得
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANG KIM其他文献
KANG KIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANG KIM', 18)}}的其他基金
Development and Validation of a Multimodal Ultrasound- Based Biomarker for Myofascial Pain
基于多模态超声的肌筋膜疼痛生物标志物的开发和验证
- 批准号:
10579668 - 财政年份:2022
- 资助金额:
$ 22.73万 - 项目类别:
Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
- 批准号:
10557917 - 财政年份:2022
- 资助金额:
$ 22.73万 - 项目类别:
Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
- 批准号:
10374343 - 财政年份:2022
- 资助金额:
$ 22.73万 - 项目类别:
Prevent Unnecessary Carotid Intervention and Stroke using Noninvasive Transcutaneous Ultrasound Thermal Strain Imaging (US-TSI)
使用无创经皮超声热应变成像 (US-TSI) 预防不必要的颈动脉干预和中风
- 批准号:
10192822 - 财政年份:2020
- 资助金额:
$ 22.73万 - 项目类别:
Prevent Unnecessary Carotid Intervention and Stroke using Noninvasive Transcutaneous Ultrasound Thermal Strain Imaging (US-TSI)
使用无创经皮超声热应变成像 (US-TSI) 预防不必要的颈动脉干预和中风
- 批准号:
10630204 - 财政年份:2020
- 资助金额:
$ 22.73万 - 项目类别:
Prevent Unnecessary Carotid Intervention and Stroke using Noninvasive Transcutaneous Ultrasound Thermal Strain Imaging (US-TSI)
使用无创经皮超声热应变成像 (US-TSI) 预防不必要的颈动脉干预和中风
- 批准号:
10414794 - 财政年份:2020
- 资助金额:
$ 22.73万 - 项目类别:
Advanced High Resolution Rodent Ultrasound Imaging System
先进的高分辨率啮齿动物超声成像系统
- 批准号:
9494245 - 财政年份:2018
- 资助金额:
$ 22.73万 - 项目类别:
Noninvasive fat quantification of liver using ultrasound thermal strain imaging
使用超声热应变成像对肝脏进行无创脂肪定量
- 批准号:
8638587 - 财政年份:2014
- 资助金额:
$ 22.73万 - 项目类别:
Noninvasive fat quantification of liver using ultrasound thermal strain imaging
使用超声热应变成像对肝脏进行无创脂肪定量
- 批准号:
8815309 - 财政年份:2014
- 资助金额:
$ 22.73万 - 项目类别:
Noninvasive Monitoring of Tissue-engineered Constructs by US Elasticity Imaging
通过美国弹性成像对组织工程构建体进行无创监测
- 批准号:
8242005 - 财政年份:2011
- 资助金额:
$ 22.73万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant














{{item.name}}会员




