PHOTOTRANSDUCTION IN HEALTH AND DISEASE

健康和疾病中的光传导

基本信息

  • 批准号:
    10374486
  • 负责人:
  • 金额:
    $ 42.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-30 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Abstract Phototransduction is a fundamental biological process involving a set of biochemical reactions in photoreceptor cells initiating vision. The long-term goal of this research program is to understand the molecular mechanisms underlying the biochemical events in phototransduction under normal and diseased states. Rhodopsin and cone opsins are the light receptors in photoreceptors cells that initiate vision upon stimulation by light. The primary focus here is on rhodopsin structure, function and dysfunction. Rhodopsin plays a central role in phototransduction as the initiator of signaling and also plays an important role in maintaining the health of photoreceptor cells. The rhodopsin gene is a hot spot for mutations causing inherited retinal diseases such as retinitis pigmentosa (RP) and congenital stationary night blindness (CSNB), which currently have no cure or effective treatment. Rhodopsin is a prototypical G protein-coupled receptor and therefore findings here can provide insights on other members of this superfamily of proteins that share commonalities in structure and mechanisms of action. Despite the wealth of knowledge available for rhodopsin, gaps in our structural and molecular understanding of the receptor still exist and a mechanistic description on the effect of mutations in the light receptor causing vision disorders is incomplete. Less is known about the structure, function, and dysfunction of cone opsins, a secondary focus here in one aim. Three aspects of rhodopsin structure and function will be examined in this proposal. Opsins must adopt a proper three-dimensional structure for proper function in photoreceptor cells. In aim 1, the misfolding and aggregation of a set of mutants that cause RP and a mutant in a cone opsin causing blue cone monochromacy will be characterized, and the resulting consequences in the retina of mouse models examined. Rhodopsin forms a supramolecular structure at its site of action in the rod outer segment of photoreceptor cells to carry out its function under scotopic conditions. In aim 2, the dynamics of this supramolecular structure will be visualized and the impact of diseased states on this membrane organization will be examined. The structure of rhodopsin is finely tuned to prevent activation of the receptor in the absence of light stimulation. Constitutive activity of rhodopsin can lead to a variety of phenotypes causing CSNB or RP. In aim 3, the molecular origin of the different phenotypes caused by mutations causing constitutive activity in rhodopsin will be examined. The proposal combines the study of a variety of genetically modified mice with innovative biophysical and biochemical methods to answer questions raised in each aim. Results from our studies will lead to a more accurate mechanistic framework to understand the function of the system under normal conditions and dysfunctions in inherited retinal diseases, which will provide new avenues for scientific inquiry. The long-term impact in studying fundamental aspects of rhodopsin structure and function will be the potential for targeted therapeutics and discovery of novel drug targets.
摘要 光转导是一个基本的生物学过程,涉及一系列生物化学反应, 感光细胞启动视觉。这项研究计划的长期目标是了解 在正常和疾病状态下的光转导的生化事件的机制。 视紫红质和视锥蛋白是光感受器细胞中的光感受器,在刺激时启动视觉 光。这里的主要重点是视紫红质的结构,功能和功能障碍。视紫红质在 在光传导中起着信号传导的启动作用,在维持健康方面也起着重要的作用 光感受器细胞。视紫红质基因是导致遗传性视网膜疾病的突变热点, 视网膜色素变性(RP)和先天性静止性夜盲症(CSNB),目前还没有治愈或 有效治疗。视紫红质是一种典型的G蛋白偶联受体,因此这里的发现可以 提供了对这个蛋白质超家族的其他成员的见解,这些成员在结构上具有共同点, 行动机制。尽管有丰富的知识可用于视紫红质,差距,在我们的结构和 对受体的分子理解仍然存在,并且对突变的影响的机制描述仍然存在。 导致视觉障碍的光受体是不完整的。关于它的结构、功能和 视锥细胞视蛋白的功能障碍,这是一个次要目标。视紫红质结构的三个方面 将在本提案中审查这一职能。视蛋白必须采用适当的三维结构, 在感光细胞中起作用。在目的1中,一组引起RP和RP的突变体的错误折叠和聚集, 将表征引起蓝锥单色性的锥视蛋白中的突变体,并且所得到的 结果在小鼠模型的视网膜检查。视紫红质在其位点形成超分子结构 在暗视条件下,在感光细胞的杆外节中起作用以执行其功能。在 目的2,这种超分子结构的动力学将被可视化,疾病状态对 将检查这种膜组织。视紫红质的结构被精细地调整以防止激活。 在没有光刺激的情况下。视紫红质的组成活性可导致多种 引起CSNB或RP的表型。在目标3中,由以下原因引起的不同表型的分子起源 将检测引起视紫红质组成型活性的突变。该提案结合了对一项 用创新的生物物理和生化方法回答各种转基因小鼠的问题 在每一个目标中。从我们的研究结果将导致一个更准确的机制框架来理解 该系统在正常条件下的功能和遗传性视网膜疾病中的功能障碍, 为科学探索提供了新的途径。视紫红质基础研究的长期影响 结构和功能将成为靶向治疗和发现新药物靶点的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul S Park其他文献

1,1'-Oxalyldiimidazole chemiluminescent enzyme immunoassay capable of simultaneously sensing multiple markers.
1,1-草酰二咪唑化学发光酶免疫分析能够同时检测多个标记。
  • DOI:
    10.1016/j.bios.2011.10.052
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Richard Chong;Jee;H. Yoon;Tae;Paul S Park;Young;Ji Hoon Lee
  • 通讯作者:
    Ji Hoon Lee
Role of Triton X-100 in chemiluminescent enzyme immunoassays capable of diagnosing genetic disorders.
Triton X-100 在能够诊断遗传性疾病的化学发光酶免疫分析中的作用。
  • DOI:
    10.1016/j.talanta.2013.06.008
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Richard Chong;Jee;H. Yoon;Paul S Park;Tae;Jee;L. Park;Young;Ji Hoon Lee
  • 通讯作者:
    Ji Hoon Lee

Paul S Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul S Park', 18)}}的其他基金

14th Annual Joint Meeting of the Great Lakes GPCR Retreat and Club des Recepteurs
大湖区 GPCR 静修会和接待员俱乐部第 14 届年度联席会议
  • 批准号:
    8594688
  • 财政年份:
    2013
  • 资助金额:
    $ 42.12万
  • 项目类别:
Phototransduction in Health and Disease
健康与疾病中的光转导
  • 批准号:
    9308219
  • 财政年份:
    2011
  • 资助金额:
    $ 42.12万
  • 项目类别:
Phototransduction in health and disease
光转导在健康和疾病中的作用
  • 批准号:
    8328917
  • 财政年份:
    2011
  • 资助金额:
    $ 42.12万
  • 项目类别:
Phototransduction in health and disease
光转导在健康和疾病中的作用
  • 批准号:
    8528609
  • 财政年份:
    2011
  • 资助金额:
    $ 42.12万
  • 项目类别:
PHOTOTRANSDUCTION IN HEALTH AND DISEASE
健康和疾病中的光传导
  • 批准号:
    10569608
  • 财政年份:
    2011
  • 资助金额:
    $ 42.12万
  • 项目类别:
Phototransduction in health and disease
光转导在健康和疾病中的作用
  • 批准号:
    8723220
  • 财政年份:
    2011
  • 资助金额:
    $ 42.12万
  • 项目类别:
Phototransduction in health and disease
光转导在健康和疾病中的作用
  • 批准号:
    8545387
  • 财政年份:
    2011
  • 资助金额:
    $ 42.12万
  • 项目类别:
Phototransduction in health and disease
光转导在健康和疾病中的作用
  • 批准号:
    8152765
  • 财政年份:
    2011
  • 资助金额:
    $ 42.12万
  • 项目类别:
Towards a structural and temporal understanding of phototransduction
对光转导的结构和时间理解
  • 批准号:
    7922252
  • 财政年份:
    2008
  • 资助金额:
    $ 42.12万
  • 项目类别:
Towards a structural and temporal understanding of phototransduction
对光转导的结构和时间理解
  • 批准号:
    7693695
  • 财政年份:
    2008
  • 资助金额:
    $ 42.12万
  • 项目类别:

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
  • 批准号:
    DP230100637
  • 财政年份:
    2023
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
  • 批准号:
    22KJ1464
  • 财政年份:
    2023
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
  • 批准号:
    2887441
  • 财政年份:
    2023
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了