Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
基本信息
- 批准号:10731977
- 负责人:
- 金额:$ 24.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureBehaviorBindingBiochemical ReactionBiological AssayBiologyCalibrationCell Culture TechniquesCellsChemical StructureChemicalsChromatinChromatin FiberChromatin StructureComplementComplexComputer ModelsDNADataData SetDevelopmentDiseaseDoxycyclineEnzymesEpigenetic ProcessEquilibriumEventFeedbackFiberGene Expression ProfilingGenesGoalsGrainHeterochromatinIndividualInvestigationKnowledgeLanguageLentivirus VectorLifeMalignant NeoplasmsMeasuresMediatingMethodologyMethodsModelingMolecularMolecular ProfilingMusPathogenesisPathway interactionsPhasePhysicsPhysiologicalProcessProductionProteinsRegenerative MedicineRegulatory ElementRepressionResearchResolutionRoleRunningSignal TransductionSirolimusStem cell pluripotencyStochastic ProcessesStructureSystemTechnologyTestingTimeTretinoinVisualizationWorkcancer therapychromosome conformation capturecomputational platformcomputerized toolsderepressionembryonic stem cellexperimental studygene repressionheterochromatin-specific nonhistone chromosomal protein HP-1improvedin vivoinduced pluripotent stem cellinsightinterestmechanical propertiesmethylation patternmigrationoverexpressionparticlephysical propertypromoterprotein protein interactionreal time monitoringrecruitresponsesimulationsmall hairpin RNAtemporal measurement
项目摘要
Abstract
Chemical, molecular and structural transformations of chromatin are intimately involved in critical cellular
phenomena, including differentiation, signaling, and pathogenesis. A detailed knowledge of how molecular
complexes involving multiple kilobases of DNA and hundreds of proteins respond to the finest changes in
chemical structure is key to elucidating the role of chromatin transformations in life and disease. The overarching
goal of this project is to develop and apply computational tools to investigate how the structure and dynamics of
chromatin determine its functional states. Our central hypothesis is that physical properties and behavior of the
chromatin fiber and associated proteins lend themselves to encoding into efficient and useful ultra-coarse-
grained (UCG) representations. Our strategy to reach the goal is by bridging together several computational and
experimental methodologies. We initiated the development of Molecular Biosystems (MB), a computational
platform for UCG simulations specifically adapted to the chromatin biology. MB methodology represents a blend
of physics-based mechanisms, such as dynamics of the chromatin fiber, with stochastic processes encompassing
protein-protein interactions and enzymatic reactions. MB studies will be complemented by all-atom MD and CG
simulations and experimentally tested using a unique chromatin in vivo assay (CiA) methodology.
Specifically, we will investigate the chromatin-mediated repression of Oct4, a key gene regulating embryonic
stem (ES) cell pluripotency at defined points in mammalian development. This is important because the ability
to reverse the Oct4 repression would streamline production of induced pluripotent cells (iPSC) and advance
regenerative medicine. The CiA technology at the Oct4 locus in mouse ES cells will be used for the exploration of
changes to chromatin structure, as well as for testing the adequacy of MB simulations. Experimental endpoints
that are directly comparable to computational hypotheses will be produced: (1) fraction of Oct4-repressed cells
in cell culture; (2) H3K9 methylation patterns on Oct4 promoter; and (3) chromatin conformation capture.
Three main components of our research are: (i) Extending and enhancing the UCG MB approach; (ii) Multi-
scale simulations of chromatin processes to elucidate the structure and dynamics of heterochromatin of Oct4
regulatory elements; (iii) Experimental real-time monitoring of heterochromatin molecular signatures using
Chromatin in vivo Assay (CiA) to study mechanisms and time course of Oct4 de-repression and provide feedback
for the computational models.
This work is important because of its focus on the physics of the gene repression, whose understanding will
bring us one step forward toward the promise of regenerative medicine and new prospects for cancer therapy.
抽象的
染色质的化学,分子和结构转化密切参与关键细胞
现象,包括分化,信号传导和发病机理。关于分子如何的详细知识
涉及多个千射线酶DNA和数百种蛋白质的复合物应对最大的变化
化学结构是阐明染色质转化在生命和疾病中的作用的关键。总体
该项目的目标是开发和应用计算工具,以研究如何调查结构和动态
染色质确定其功能状态。我们的核心假设是物理特性和行为
染色质纤维和相关的蛋白质使其自身编码为高效且有用的超质量
粒度(UCG)表示。我们实现目标的策略是将几个计算和
实验方法。我们启动了分子生物系统(MB)的发展,这是一种计算
UCG模拟平台专门适用于染色质生物学。 MB方法论代表一种混合
基于物理的机制,例如染色质纤维的动力学,并具有随机过程
蛋白质蛋白质相互作用和酶促反应。 MB研究将由全原子MD和CG进行补充
使用独特的体内染色质分析(CIA)方法进行了模拟和实验测试。
具体而言,我们将研究OCT4的染色质介导的抑制,OCT4是调节胚胎的关键基因
在哺乳动物发育中定义的点处的茎(ES)细胞多能性。这很重要,因为能力
为了扭转OCT4的抑制作用将简化诱导的多能细胞(IPSC)的产生并推进
再生医学。小鼠ES细胞中OCT4基因座的CIA技术将用于探索
染色质结构的变化以及测试MB模拟的适当性。实验端点
将产生与计算假设的直接相当
在细胞培养中; (2)OCT4启动子上的H3K9甲基化模式; (3)染色质构象捕获。
我们研究的三个主要组成部分是:(i)扩展和增强UCG MB方法; (ii)多
染色质过程的比例模拟,以阐明OCT4异染色质的结构和动力学
监管元素; (iii)使用实验实时监测异染色质分子特征
体内染色质分析(CIA)研究OCT4消除抑制的机制和时间过程并提供反馈
对于计算模型。
这项工作很重要,因为它专注于基因抑制的物理,其理解将会
使我们朝着再生医学和癌症治疗的新前景迈出一步。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: Optimizing a PARP10 inhibitor.
- DOI:10.1016/j.bmcl.2020.127464
- 发表时间:2020-10-01
- 期刊:
- 影响因子:2.7
- 作者:Lemke M;Ravenscroft H;Rueb NJ;Kireev D;Ferraris D;Franzini RM
- 通讯作者:Franzini RM
A simulation model of heterochromatin formation at submolecular detail.
- DOI:10.1016/j.isci.2022.104590
- 发表时间:2022-07-15
- 期刊:
- 影响因子:5.8
- 作者:Williams, Michael R.;Xiaokang, Yan;Hathaway, Nathaniel A.;Kireev, Dmitri
- 通讯作者:Kireev, Dmitri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel A. Hathaway其他文献
Cavitation Enhancement Increases the E ffi ciency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications
空化增强提高了固定细胞染色质断裂的效率和一致性,用于下游定量应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Anna M. Chiarella;Austin L Quimby;Marjan Mehrab;Brian Velasco;S. Kasoji;Ian J. Davis;Paul A. Dayton;Nathaniel A. Hathaway;S. Pattenden - 通讯作者:
S. Pattenden
Nathaniel A. Hathaway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel A. Hathaway', 18)}}的其他基金
ILLUMINATION OF CHROMATIN REGULATION VIA CHEMICAL CONTROLLED PROXIMITY
通过化学控制的接近来阐明染色质调控
- 批准号:
10550480 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Chemically regulating AAV transgene expression with endogenous gene activators
使用内源基因激活剂化学调节 AAV 转基因表达
- 批准号:
10453051 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
Chemically regulating AAV transgene expression with endogenous gene activators
使用内源基因激活剂化学调节 AAV 转基因表达
- 批准号:
10569596 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
Site-specific epigenetic activation of TP53 to improve cancer therapy
TP53 的位点特异性表观遗传激活可改善癌症治疗
- 批准号:
10258179 - 财政年份:2021
- 资助金额:
$ 24.56万 - 项目类别:
Chemically controlling chromatin to treat Friedriech's Ataxia
化学控制染色质治疗弗里德里希共济失调
- 批准号:
10009926 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
10061636 - 财政年份:2019
- 资助金额:
$ 24.56万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
9885690 - 财政年份:2019
- 资助金额:
$ 24.56万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
10300059 - 财政年份:2019
- 资助金额:
$ 24.56万 - 项目类别:
MECHANISM OF HP1-MEDIATED HETEROCHROMATIN ASSEMBLY AND DURABILITY IN LIVE CELLS
HP1 介导的异染色质组装机制及其在活细胞中的耐久性
- 批准号:
9685606 - 财政年份:2017
- 资助金额:
$ 24.56万 - 项目类别:
MECHANISM OF HP1-MEDIATED HETEROCHROMATIN ASSEMBLY AND DURABILITY IN LIVE CELLS
HP1 介导的异染色质组装机制及其在活细胞中的耐久性
- 批准号:
10197949 - 财政年份:2017
- 资助金额:
$ 24.56万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10819019 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
An Autonomous Rapidly Adaptive Multiphoton Microscope for Neural Recording and Stimulation
用于神经记录和刺激的自主快速自适应多光子显微镜
- 批准号:
10739050 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别: