Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
基本信息
- 批准号:10061636
- 负责人:
- 金额:$ 30.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureBehaviorBiochemical ReactionBiological AssayBiologyCalibrationCell Culture TechniquesCellsChemical StructureChemicalsChromatinChromatin FiberChromatin StructureComplementComplexComputer ModelsDNADataData SetDevelopmentDiseaseDoxycyclineEnzymesEpigenetic ProcessEquilibriumEventFeedbackFiberGene Expression ProfilingGenesGoalsGrainHeterochromatinIndividualInvestigationKnowledgeLanguageLentivirus VectorLifeMalignant NeoplasmsMeasuresMediatingMethodologyMethodsModelingMolecularMolecular ProfilingMolecular StructureMusPathogenesisPathway interactionsPhasePhysicsPhysiologicalProcessProductionProteinsRegenerative MedicineRegulatory ElementRepressionResearchResolutionRoleRunningSignal TransductionSirolimusStem cell pluripotencyStochastic ProcessesStructureSystemTechnologyTestingTimeTretinoinVisualizationWorkbasecancer therapychromosome conformation capturecomputational platformcomputerized toolsembryonic stem cellexperimental studygene repressionheterochromatin-specific nonhistone chromosomal protein HP-1improvedin vivoinduced pluripotent stem cellinsightinterestmechanical propertiesmethylation patternoverexpressionparticlephysical propertypromoterprotein protein interactionreal time monitoringrecruitresponsesimulationsmall hairpin RNAtemporal measurement
项目摘要
Abstract
Chemical, molecular and structural transformations of chromatin are intimately involved in critical cellular
phenomena, including differentiation, signaling, and pathogenesis. A detailed knowledge of how molecular
complexes involving multiple kilobases of DNA and hundreds of proteins respond to the finest changes in
chemical structure is key to elucidating the role of chromatin transformations in life and disease. The overarching
goal of this project is to develop and apply computational tools to investigate how the structure and dynamics of
chromatin determine its functional states. Our central hypothesis is that physical properties and behavior of the
chromatin fiber and associated proteins lend themselves to encoding into efficient and useful ultra-coarse-
grained (UCG) representations. Our strategy to reach the goal is by bridging together several computational and
experimental methodologies. We initiated the development of Molecular Biosystems (MB), a computational
platform for UCG simulations specifically adapted to the chromatin biology. MB methodology represents a blend
of physics-based mechanisms, such as dynamics of the chromatin fiber, with stochastic processes encompassing
protein-protein interactions and enzymatic reactions. MB studies will be complemented by all-atom MD and CG
simulations and experimentally tested using a unique chromatin in vivo assay (CiA) methodology.
Specifically, we will investigate the chromatin-mediated repression of Oct4, a key gene regulating embryonic
stem (ES) cell pluripotency at defined points in mammalian development. This is important because the ability
to reverse the Oct4 repression would streamline production of induced pluripotent cells (iPSC) and advance
regenerative medicine. The CiA technology at the Oct4 locus in mouse ES cells will be used for the exploration of
changes to chromatin structure, as well as for testing the adequacy of MB simulations. Experimental endpoints
that are directly comparable to computational hypotheses will be produced: (1) fraction of Oct4-repressed cells
in cell culture; (2) H3K9 methylation patterns on Oct4 promoter; and (3) chromatin conformation capture.
Three main components of our research are: (i) Extending and enhancing the UCG MB approach; (ii) Multi-
scale simulations of chromatin processes to elucidate the structure and dynamics of heterochromatin of Oct4
regulatory elements; (iii) Experimental real-time monitoring of heterochromatin molecular signatures using
Chromatin in vivo Assay (CiA) to study mechanisms and time course of Oct4 de-repression and provide feedback
for the computational models.
This work is important because of its focus on the physics of the gene repression, whose understanding will
bring us one step forward toward the promise of regenerative medicine and new prospects for cancer therapy.
摘要
染色质的化学、分子和结构转化与细胞内重要的生物学过程密切相关。
现象,包括分化,信号传导和发病机制。详细了解分子如何
涉及DNA的多个酶和数百种蛋白质的复合物对细胞中最细微的变化做出反应,
化学结构是阐明染色质转化在生命和疾病中的作用的关键。总体
这个项目的目标是开发和应用计算工具来研究如何结构和动力学的
染色质决定其功能状态。我们的中心假设是,
染色质纤维和相关蛋白质有助于编码成有效和有用的超粗-
UCG(Grained Representations)我们的战略,以达到这一目标是通过桥接在一起的几个计算和
实验方法学我们发起了分子生物系统(MB)的发展,一个计算
UCG模拟平台专门适用于染色质生物学。甲基溴方法是一种混合
基于物理学的机制,如染色质纤维的动态,随机过程包括
蛋白质-蛋白质相互作用和酶促反应。MB研究将得到全原子MD和CG的补充
使用独特的染色质体内测定(CiA)方法进行模拟和实验测试。
具体而言,我们将研究染色质介导的Oct 4的抑制,Oct 4是调控胚胎发育的关键基因,
在哺乳动物发育的特定点,干细胞(ES)多能性。这很重要,因为
逆转Oct 4抑制将简化诱导多能细胞(iPSC)的生产,
再生医学小鼠ES细胞Oct 4位点的CiA技术将用于探索
染色质结构的变化,以及用于测试MB模拟的充分性。实验终点
将产生与计算假设直接可比的结果:(1)Oct 4抑制细胞的分数
在细胞培养物中;(2)Oct 4启动子上的H3 K9甲基化模式;和(3)染色质构象捕获。
我们的研究的三个主要组成部分是:(一)扩展和加强UCG MB方法;(二)多
染色质过程的规模模拟,以阐明Oct 4异染色质的结构和动力学
(iii)利用基因组学方法实时监测异染色质分子特征
染色质体内试验(CiA),用于研究Oct 4去阻遏的机制和时间过程,并提供反馈
用于计算模型。
这项工作是重要的,因为它的重点是基因抑制的物理,其理解将
使我们朝着再生医学的承诺和癌症治疗的新前景前进了一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel A. Hathaway其他文献
Cavitation Enhancement Increases the E ffi ciency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications
空化增强提高了固定细胞染色质断裂的效率和一致性,用于下游定量应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Anna M. Chiarella;Austin L Quimby;Marjan Mehrab;Brian Velasco;S. Kasoji;Ian J. Davis;Paul A. Dayton;Nathaniel A. Hathaway;S. Pattenden - 通讯作者:
S. Pattenden
Nathaniel A. Hathaway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel A. Hathaway', 18)}}的其他基金
ILLUMINATION OF CHROMATIN REGULATION VIA CHEMICAL CONTROLLED PROXIMITY
通过化学控制的接近来阐明染色质调控
- 批准号:
10550480 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Chemically regulating AAV transgene expression with endogenous gene activators
使用内源基因激活剂化学调节 AAV 转基因表达
- 批准号:
10453051 - 财政年份:2022
- 资助金额:
$ 30.42万 - 项目类别:
Chemically regulating AAV transgene expression with endogenous gene activators
使用内源基因激活剂化学调节 AAV 转基因表达
- 批准号:
10569596 - 财政年份:2022
- 资助金额:
$ 30.42万 - 项目类别:
Site-specific epigenetic activation of TP53 to improve cancer therapy
TP53 的位点特异性表观遗传激活可改善癌症治疗
- 批准号:
10258179 - 财政年份:2021
- 资助金额:
$ 30.42万 - 项目类别:
Chemically controlling chromatin to treat Friedriech's Ataxia
化学控制染色质治疗弗里德里希共济失调
- 批准号:
10009926 - 财政年份:2020
- 资助金额:
$ 30.42万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
9885690 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
10731977 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
10300059 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
MECHANISM OF HP1-MEDIATED HETEROCHROMATIN ASSEMBLY AND DURABILITY IN LIVE CELLS
HP1 介导的异染色质组装机制及其在活细胞中的耐久性
- 批准号:
9685606 - 财政年份:2017
- 资助金额:
$ 30.42万 - 项目类别:
MECHANISM OF HP1-MEDIATED HETEROCHROMATIN ASSEMBLY AND DURABILITY IN LIVE CELLS
HP1 介导的异染色质组装机制及其在活细胞中的耐久性
- 批准号:
10197949 - 财政年份:2017
- 资助金额:
$ 30.42万 - 项目类别:
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
- 批准号:
2316666 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Fellowship Award
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Standard Grant
Architecture, dynamics and cell-specific behavior of tau condensates
tau 凝聚物的结构、动力学和细胞特异性行为
- 批准号:
10662730 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
NSF-BSF: Natural selection on the social interactions that mediate collective behavior: ecological pressures and genomic architecture
NSF-BSF:介导集体行为的社会互动的自然选择:生态压力和基因组结构
- 批准号:
1940647 - 财政年份:2020
- 资助金额:
$ 30.42万 - 项目类别:
Continuing Grant
Description method and formal verification method with section behavior model based on software architecture
基于软件体系结构的分段行为模型描述方法和形式化验证方法
- 批准号:
19K11911 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Genetic Architecture and Proximate Mechanisms Underlying Indirect Genetic Effects on Cooperative Antipredator Behavior
职业:间接遗传效应对合作性反捕食者行为的遗传结构和直接机制
- 批准号:
1453536 - 财政年份:2015
- 资助金额:
$ 30.42万 - 项目类别:
Continuing Grant
Investigation of the influence of architecture and doping of diamond like carbon coatings on the damage behavior under cyclic mechanical stress
研究类金刚石碳涂层的结构和掺杂对循环机械应力下损伤行为的影响
- 批准号:
279491470 - 财政年份:2015
- 资助金额:
$ 30.42万 - 项目类别:
Research Grants