Neuroethics of Predictive MRI Testing: Parental Attitudes Towards Pre-Symptomatic Identification of Autism Spectrum Disorder
预测性 MRI 测试的神经伦理学:父母对自闭症谱系障碍症状前识别的态度
基本信息
- 批准号:10003829
- 负责人:
- 金额:$ 6.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-16 至 2020-09-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAttitudeBRAIN initiativeBehavioral ModelBeliefBioethicsBrainBrain DiseasesBrain imagingCategoriesChildChildhoodClassificationClinicalComplementDataData CollectionData SetDecision MakingDevelopmentDiagnosisDiagnosticDisclosureDiseaseEarly InterventionEnvironmental Risk FactorEthical IssuesEthicsFaceFutureGeneticGenetic ResearchGenetic screening methodGenomicsGoalsGuidelinesHumanIndividualInfantIntentionInterviewJudgmentKnowledgeLiteratureMachine LearningMagnetic Resonance ImagingMeasuresModalityNeurosciencesNeurosciences ResearchParentsParticipantPatternPediatric HospitalsPopulationPredictive FactorQualitative ResearchReportingResearchResearch MethodologyResearch PersonnelResearch TrainingReview LiteratureRiskSamplingSiteSurveysSymptomsTechniquesTest ResultTestingTimeTrainingUniversity resourcesValidationWashingtonWorkautism onsetautism spectrum disorderautistic childrenbasecareerclinical Diagnosisclinical predictorsfrontierhigh risk infantimaging studyinterestneuroethicsneuroimagingparental influenceprediction algorithmpredictive testprogramsrecruitsystematic reviewtheories
项目摘要
PROJECT SUMMARY
Machine-learning-based classification of neuroimaging data (hereafter ML-MRI) to predict clinical
diagnoses has increased substantially in the last decade. Despite the promise of ML for clinical
classification and prediction, no work has been done to anticipate the ethical obligations and
challenges that emerge when ML algorithms predict clinical diagnoses in pre-symptomatic
individuals. Two recent reports from the Infant Brain Imaging Study (IBIS) have exemplified the
ML classification approach by predicting 24-month clinical diagnosis of autism spectrum disorder
(ASD) from 6-month MRI data in infants at high and low familial risk for ASD. These preliminary
results demonstrated—for the first time—the feasibility of identifying infants prior to onset of ASD
symptoms, and raised critical ethical questions about whether and how to disclose predictive ML-
MRI classification of ASD to parents of pre-symptomatic infants. The proposed research aims to
investigate parental attitudes towards predictive ML-MRI testing in IBIS, and addresses a core
principle of BRAIN Initiative: considering the ethical implications of neuroscience research. Aim 1
will review the bioethics literature on disclosure of results in genetic research, and identify
overlapping and distinct ethical considerations for disclosure using ML-MRI vs. genetic testing for
disease prediction. Aim 2 will use a theory-based approach to assess the attitudes of IBIS parents
towards predictive ML-MRI testing through qualitative interviews and a quantitative survey. The
knowledge gained through this research will help investigators make ethical decisions about
disclosure in future neuroimaging studies of high-risk infants. Our long-term goal is to develop
guidelines for navigating the unique ethical challenges posed by a new frontier in neuroimaging
research: clinical prediction via increasingly powerful and sophisticated ML-based analyses of
large neuroimaging datasets. The proposed research and training plan will leverage the resources
of the University of Washington Autism Center, the Treuman Katz Center for Pediatric Bioethics
at Seattle Children’s Hospital, and the multi-site, longitudinal Infant Brain Imaging Study. The
applicant will receive formal training in neuroethics, pediatric bioethics, and qualitative research
methods, which will complement her prior skillset and prepare her for an independent research
career investigating ethical issues in pediatric neuroscience.
项目摘要
神经成像数据的基于机器学习的分类(以下简称ML-MRI),以预测临床
在过去十年中,诊断大幅增加。尽管ML在临床上有希望
分类和预测,没有做任何工作来预测道德义务,
当ML算法预测症状前临床诊断时出现的挑战
个体婴儿脑成像研究(IBIS)最近的两份报告举例说明了
通过预测自闭症谱系障碍24个月临床诊断的ML分类方法
(ASD)来自ASD高和低家族风险婴儿的6个月MRI数据。这些初步
结果首次证明了在ASD发作前识别婴儿的可行性
症状,并提出了关于是否以及如何披露预测性ML的关键伦理问题-
有症状前婴儿父母的ASD MRI分类。拟议的研究旨在
调查父母对IBIS中预测性ML-MRI测试的态度,并解决了一个核心问题,
BRAIN Initiative的原则:考虑神经科学研究的伦理含义。要求1
将审查关于披露遗传研究结果的生物伦理学文献,
使用ML-MRI与基因检测进行披露的重叠和不同的伦理考虑,
疾病预测目标2将使用基于理论的方法来评估IBIS家长的态度
通过定性访谈和定量调查预测ML-MRI测试。的
通过这项研究获得的知识将有助于研究人员做出道德决定,
在未来的高风险婴儿的神经影像学研究中披露。我们的长期目标是发展
神经影像学新前沿所带来的独特伦理挑战指南
研究:通过日益强大和复杂的ML分析进行临床预测,
大型神经成像数据集。拟议的研究和培训计划将利用资源,
华盛顿大学自闭症中心、Treuman Katz儿科生物伦理学中心
在西雅图儿童医院,和多地点,纵向婴儿脑成像研究。的
申请人将接受神经伦理学,儿科生物伦理学和定性研究的正式培训
方法,这将补充她以前的技能,并为她的独立研究做好准备
研究儿科神经科学中的伦理问题。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Presymptomatic Detection and Intervention for Autism Spectrum Disorder.
自闭症谱系障碍的症状前检测和干预。
- DOI:10.1542/peds.2020-032250
- 发表时间:2021
- 期刊:
- 影响因子:8
- 作者:MacDuffie,KatherineE;Estes,AnnetteM;Harrington,LucasT;Peay,HollyL;Piven,Joseph;PruettJr,JohnR;Wolff,JasonJ;Wilfond,BenjaminS
- 通讯作者:Wilfond,BenjaminS
A "salad bowl" approach to neuroethics collaboration.
神经伦理学合作的“沙拉碗”方法。
- DOI:10.1080/21507740.2020.1778134
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:MacDuffie KE
- 通讯作者:MacDuffie KE
Neurotechnologies Cannot Seize Thoughts: A Call for Caution in Nomenclature.
神经技术无法抓住思想:命名时需谨慎。
- DOI:10.1080/21507740.2019.1595779
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:MacDuffie,KatherineE;Goering,Sara
- 通讯作者:Goering,Sara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kate E. MacDuffie其他文献
28.2 SHOULD WE DO IT BECAUSE WE CAN? THE ETHICS OF PREDICTING AUTISM SPECTRUM DISORDER IN INFANCY
- DOI:
10.1016/j.jaac.2021.07.186 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Kate E. MacDuffie - 通讯作者:
Kate E. MacDuffie
Kate E. MacDuffie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kate E. MacDuffie', 18)}}的其他基金
The experience of human subjects with brain organoid research
人类受试者进行脑类器官研究的经验
- 批准号:
10674018 - 财政年份:2022
- 资助金额:
$ 6.66万 - 项目类别:
The experience of human subjects with brain organoid research
人类受试者进行脑类器官研究的经验
- 批准号:
10660220 - 财政年份:2022
- 资助金额:
$ 6.66万 - 项目类别:
The experience of human subjects with brain organoid research
人类受试者进行脑类器官研究的经验
- 批准号:
10261516 - 财政年份:2020
- 资助金额:
$ 6.66万 - 项目类别:
The experience of human subjects with brain organoid research
人类受试者进行脑类器官研究的经验
- 批准号:
10101989 - 财政年份:2020
- 资助金额:
$ 6.66万 - 项目类别:
Neuroethics of Predictive MRI Testing: Parental Attitudes Towards Pre-Symptomatic Identification of Autism Spectrum Disorder
预测性 MRI 测试的神经伦理学:父母对自闭症谱系障碍症状前识别的态度
- 批准号:
9667076 - 财政年份:2018
- 资助金额:
$ 6.66万 - 项目类别:
相似海外基金
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 6.66万 - 项目类别:
Standard Grant
BCSER - PVEST: A Dynamic Framework for Investigating STEM Interest, Attitude and Identity Among African American Middle School Students
BCSER - PVEST:调查非裔美国中学生 STEM 兴趣、态度和身份的动态框架
- 批准号:
2327055 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Standard Grant
The hidden power of grammar: a mixed-methods study of media discourses on climate change protests and their effects on audience attitude.
语法的隐藏力量:气候变化抗议媒体话语及其对受众态度影响的混合方法研究。
- 批准号:
2881735 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Studentship
Development of Psychological Approach to Improve Intergroup Attitude and Behavior and Exploration of Its Application
改善群际态度和行为的心理学方法的发展及其应用探索
- 批准号:
23K12855 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Attitude and Identity in Wales' Primary and Secondary Schools
威尔士中小学的态度和认同
- 批准号:
2876788 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Studentship
Attitude and Shape Estimation of an Unknown Object Using Light Curves
使用光曲线估计未知物体的姿态和形状
- 批准号:
23K04232 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Examining the relationship between death attitude and AD completion and attitude among older Chinese Americans
研究老年华裔美国人的死亡态度与 AD 完成度和态度之间的关系
- 批准号:
10575699 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Insect flight mechanisms in high flight attitude
高飞行姿态下昆虫的飞行机制
- 批准号:
22H01397 - 财政年份:2022
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-accurate relative position and rotation control of multiple satellites considering orbit-attitude coupled dynamics for space interferometry
空间干涉测量中考虑轨道姿态耦合动力学的多卫星高精度相对位置和旋转控制
- 批准号:
22K18856 - 财政年份:2022
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Solar Sailing: Attitude, Orbit, and Shape Control
太阳航行:姿态、轨道和形状控制
- 批准号:
RGPIN-2020-04037 - 财政年份:2022
- 资助金额:
$ 6.66万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




