E-Organoids: Functional Brain Organoids Co-grafted with Transparent Microthreads
E-类器官:与透明微丝共同移植的功能性大脑类器官
基本信息
- 批准号:10002957
- 负责人:
- 金额:$ 236.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalBiological ModelsBrainBrain DiseasesCell DeathCellsCerebrumChronicDevelopmentDiseaseDrug ScreeningElectrophysiology (science)EmbryoEvaluationFutureGenerationsHumanHuman ActivitiesIn VitroIndividualInvestigationModelingMonitorNeuronsNutrientOrganOrganogenesisOrganoidsOxygenPatientsPeripheralPluripotent Stem CellsPopulationRegenerative MedicineResearchSystemTechnologyTissuesTransplantationcell typedisease mechanisms studydrug discoverydrug testingin vivoinduced pluripotent stem cellinnovationnetwork dysfunctionnovel therapeuticsstem cell technologystem cellstwo photon microscopy
项目摘要
Recent advances in pluripotent stem cell technology have enabled generation of cerebral
organoids from induced pluripotent stem cells derived from human peripheral tissues. Cerebral
organoids are formed by self-assembled, 3D aggregates generated from stem cells with different
cell types and layers mimic the embryonic human brain. Cerebral organoids open up
unprecedented opportunities for studying brain development, investigation of neuronal network
dysfunctions underlying human brain diseases, and providing an experimental system for drug
testing and discovery. In vivo transplantation of cerebral organoids offers a transformative
approach for future applications of transplantable regenerative medicine. Although tremendous
breakthroughs have been made in organoid research in the recent years, two key challenges
fundamentally limit their utility and further development towards a complete model system for
investigation of human brain development and disorders. The first challenge is lack of a chronic
functional interface for precise monitoring cellular and network-level activity of the organoids
with high precision and the second challenge is lack of the natural brain microenvironment and
vasculature impeding maturation of neurons and causing cell death at the organoid core.
This project will overcome these challenges by creating E-Organoids with a seamless
functional interface that will monitor activity of individual neurons and cell populations as well as
supply oxygen and nutrients for healthy maturation, in vitro and in vivo. The proposed E-
Organoids will create a complete platform combining in vivo electrophysiology and 2-photon
microscopy for robust and quantitative in vivo functional evaluation of neuronal activity of human
cortical organoids at the cellular and network level. In the future, this technology could allow
systematic investigation of effects of new drugs on development and organization of human
neuronal networks during development.
多能干细胞技术的最新进展使脑细胞的生成成为可能
来自人类外周组织的诱导多能干细胞中的有机类化合物。大脑
有机化合物是由干细胞自组装而成的3D聚集体,具有不同的
细胞的类型和层次模仿了人类胚胎的大脑。大脑器官打开
研究大脑发育、研究神经网络面临前所未有的机遇
人类大脑疾病的潜在功能障碍,并为药物提供了一个实验系统
测试和发现。脑器官体内移植提供了一种变革性的
可移植再生医学未来应用的途径。尽管数量巨大
近年来,有机化合物研究取得了突破性进展,这是两个关键挑战
从根本上限制了它们的实用性,并进一步发展为一个完整的模型系统
研究人类大脑的发育和紊乱。第一个挑战是缺乏慢性
用于精确监测有机化合物的细胞和网络水平活动的功能接口
第二个挑战是缺乏自然的大脑微环境和
血管系统阻碍神经元的成熟并导致类器官核心的细胞死亡。
该项目将克服这些挑战,通过创建电子有机与无缝
功能界面,将监控单个神经元和细胞群体的活动以及
为体内和体外的健康成熟提供氧气和营养。建议的E-
有机化合物将创造一个完整的平台,将体内电生理学和双光子相结合
显微技术用于健壮、定量地评价人体神经活动的功能
在细胞和网络水平上的皮质有机体。在未来,这项技术可能会允许
新药对人体发育和组织影响的系统研究
发育过程中的神经元网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duygu Kuzum其他文献
Duygu Kuzum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duygu Kuzum', 18)}}的其他基金
An Ultra High-Density Virtual Array with Nonlinear Processing of Multimodal Neural Recordings
具有多模态神经记录非线性处理的超高密度虚拟阵列
- 批准号:
9766300 - 财政年份:2018
- 资助金额:
$ 236.89万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 236.89万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 236.89万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 236.89万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 236.89万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 236.89万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 236.89万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 236.89万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 236.89万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 236.89万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 236.89万 - 项目类别: