Decrypting Variants of Uncertain Significance in Long-QT Syndrome
解密长QT综合征中不确定意义的变异
基本信息
- 批准号:10004933
- 负责人:
- 金额:$ 4.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArrhythmiaBenignBindingBiochemicalBiochemistryBiophysicsCell surfaceCellsChildClassificationComplexCounselingDataDatabasesDecision MakingDiseaseElectrophysiology (science)EvaluationFamilial atrial fibrillation FamilyFunctional disorderFundingGenesGeneticGoalsGrowthGuidelinesHeritabilityHospitalsImpairmentInterventionInvestigationLaboratoriesLiteratureLong QT SyndromeMedicalMedical GeneticsMethodsModelingMutationNetwork-basedOnline SystemsOther GeneticsPathogenicityPatient CarePopulationPotassium ChannelPropertyResearchRisk FactorsShort QT syndromeStructureSyndromeTest ResultTestingThermodynamicsTrainingVariantWorkartificial neural networkbasecomputerized toolsdisease-causing mutationgenetic testinggenetic variantimprovedinnovationloss of functionmolecular dynamicsmultidisciplinarymutation carriernext generation sequencingnovelprediction algorithmrare variantstandard of carestructural biologystructured datasudden cardiac deathtraffickingtraitvariant of unknown significancevoltageyoung adult
项目摘要
Genetic testing has become standard-of-care for many heritable diseases including congenital long-
QT syndrome (LQTS). However, interpreting genetic test results is often confounded by the discovery
of ‘variants of unknown significance’ (VUS) for which there is insufficient data to determine whether a
particular variant is benign or pathogenic. The emergence of widespread clinical genetic testing and
the use of next-generation sequencing in research have caused explosive growth in the number of
known variants associated with disease traits and in populations. The goal of this project is to develop
a novel paradigm for distinguishing disease-causing mutations from benign variants in LQTS and
related genetic arrhythmia syndromes. We will focus on two potassium channel subunit genes,
KCNQ1 and KCNE1, which are associated with LQTS, short-QT syndrome and familial atrial
fibrillation. The ability to discern reliably whether a variant is a true risk factor would be transformative,
improving patient care by avoiding unnecessary or potentially harmful interventions in carriers of
benign variants, guiding therapy of true mutation carriers and improving family counseling.
During the prior period of support, we implemented and optimized a high throughput experimental
strategy to determine the functional consequences of ~110 KCNQ1 variants located in the KCNQ1
voltage-sensing domain (VSD) (Aim 1). In parallel, we elucidated the stability, structural properties,
and cell surface expression of ~50 KCNQ1 VSD variants and deduced a previously unrecognized
functional domain in the channel (S0 segment; Aim 2). Using data from the literature and from Aims
1-2, we developed, trained and tested a computational predictor for estimating the likelihood of
channel dysfunction caused by KCNQ1 variants that performs better than other variant prediction
algorithms (Aim 3). Together our work provides a new paradigm for addressing the emerging
challenge of genetic variant classification. In the next funding period, we propose to continue this
novel multidisciplinary paradigm to evaluate ~200 additional KCNQ1 variants at the functional and
structural levels with an emphasis on variants in the pore domain and C-terminus, to investigate the
functional and structural consequences of all known KCNE1 variants (~110), examine the impact of
KCNQ1 and KCNE1 variants on intersubunit binding, and to develop an advanced computational
pathogenicity predictor. Our study will yield a large and unprecedented database of functional,
structural and biochemical properties of hundreds of KCNQ1 and KCNE1 variants along with an
advanced, data-trained computational prediction algorithm capable of accurately discriminating
deleterious from benign variants. These results will contribute to improving the accuracy of LQTS
genetic test interpretation and improve medical decision-making for LQTS.
基因检测已成为许多遗传性疾病的标准护理,包括先天性长-
QT综合征(LQTS)。然而,解释基因测试结果往往是混淆的发现
未知意义的变异(VUS),没有足够的数据来确定是否存在
特定变体是良性的或致病的。广泛的临床基因检测的出现,
下一代测序技术在研究中的应用导致了基因组数量的爆炸性增长,
与疾病特征和人群相关的已知变异。该项目的目标是开发
一种区分LQTS中致病突变与良性变异的新范式,
相关遗传性心律失常综合征我们将重点关注两个钾通道亚基基因,
KCNQ 1和KCNE 1与LQTS、短QT综合征和家族性心房颤动相关
纤维性颤动可靠地辨别一种变异是否是真正的风险因素的能力将是变革性的,
通过避免对携带者进行不必要或潜在有害的干预来改善患者护理
良性变异,指导真突变携带者的治疗和改善家庭咨询。
在前期支持期间,我们实施并优化了高通量实验
确定位于KCNQ 1中的~110个KCNQ 1变体的功能后果的策略
电压敏感域(VSD)(目标1)。同时,我们阐明了稳定性,结构特性,
和细胞表面表达的~50 KCNQ 1 VSD变异体,并推导出一个以前未被认识到的
通道中的功能域(S 0段; Aim 2)。使用文献和Aims中的数据
1-2,我们开发,训练和测试了一个计算预测器,用于估计
由KCNQ 1变体引起的通道功能障碍,其表现优于其他变体预测
算法(目标3)。我们的工作为解决新出现的
遗传变异分类的挑战。在下一个拨款期内,我们建议继续进行这项工作,
一种新的多学科范式,用于评估约200种额外的KCNQ 1变体的功能和
结构水平,重点是孔结构域和C-末端的变体,以研究
所有已知KCNE 1变体的功能和结构后果(~110),检查
KCNQ 1和KCNE 1变体对亚基间结合的影响,并开发一种先进的计算
致病性预测因子我们的研究将产生一个巨大的和前所未有的数据库的功能,
数百种KCNQ 1和KCNE 1变体的结构和生化特性沿着
先进的数据训练计算预测算法,能够准确区分
从良性变异有害。这些结果将有助于提高LQTS的精度
基因测试解释和改善LQTS的医疗决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alfred L. George其他文献
High-Dose Midazolam for Pediatric Refractory Status Epilepticus: A Single-Center Retrospective Study*
高剂量咪达唑仑治疗小儿难治性癫痫持续状态:单中心回顾性研究*
- DOI:
10.1097/pcc.0000000000003043 - 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Z. S. Daniels;N. Srdanovic;K. Rychlik;Craig M. Smith;Joshua L. Goldstein;Alfred L. George - 通讯作者:
Alfred L. George
Prophecy or empiricism? Clinical value of predicting versus determining genetic variant functions
预言还是经验主义?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.6
- 作者:
A. Brunklaus;Alfred L. George;D. Lal;E. Heinzen;A. Goldman - 通讯作者:
A. Goldman
Scanning mutagenesis of the voltage-gated sodium channel NasubV/sub1.2 using base editing
使用碱基编辑对电压门控钠通道 NaV1.2 进行扫描诱变
- DOI:
10.1016/j.celrep.2023.112563 - 发表时间:
2023-06-27 - 期刊:
- 影响因子:6.900
- 作者:
Juan Lorenzo B. Pablo;Savannah L. Cornett;Lei A. Wang;Sooyeon Jo;Tobias Brünger;Nikita Budnik;Mudra Hegde;Jean-Marc DeKeyser;Christopher H. Thompson;John G. Doench;Dennis Lal;Alfred L. George;Jen Q. Pan - 通讯作者:
Jen Q. Pan
Mutant Channels Contribute Ͻ50% to Na Ϩ Current in Paramyotonia Congenita Muscle
先天性副肌强直中突变通道对 Na 电流贡献 Ͻ50%
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
N. Mitrović;Alfred L. George;Reinhardt Rü Del;F. Lehmann‐Horn;H. Lerche - 通讯作者:
H. Lerche
Paramyotonia congenita without paralysis on exposure to cold: a novel mutation in the SCN4A gene (Val1293Ile).
先天性副肌强直,接触寒冷后不瘫痪:SCN4A 基因 (Val1293Ile) 的新突变。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:1.7
- 作者:
Manuela C. Koch;Karin Baumbach;Alfred L. George;Kenneth Ricker - 通讯作者:
Kenneth Ricker
Alfred L. George的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alfred L. George', 18)}}的其他基金
Northwestern University O'Brien Kidney National Resource Center
西北大学奥布莱恩肾脏国家资源中心
- 批准号:
10754080 - 财政年份:2023
- 资助金额:
$ 4.42万 - 项目类别:
Cellular Pathophysiology of Neuronal Na/K-ATPase Dysfunction
神经元 Na/K-ATP 酶功能障碍的细胞病理生理学
- 批准号:
10539624 - 财政年份:2022
- 资助金额:
$ 4.42万 - 项目类别:
Cellular Pathophysiology of Neuronal Na/K-ATPase Dysfunction
神经元 Na/K-ATP 酶功能障碍的细胞病理生理学
- 批准号:
10646335 - 财政年份:2022
- 资助金额:
$ 4.42万 - 项目类别:
Kinetic Imaging Plate Reader for Drug Discovery and Biology
用于药物发现和生物学的动态成像读板仪
- 批准号:
10177367 - 财政年份:2021
- 资助金额:
$ 4.42万 - 项目类别:
Channelopathy-Associated Epilepsy Research Center
通道病相关癫痫研究中心
- 批准号:
10477447 - 财政年份:2018
- 资助金额:
$ 4.42万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.42万 - 项目类别:
Continuing Grant