Generalizing Deep Learning Reconstruction for Free-Breathing and Quantitative MRI
推广自由呼吸和定量 MRI 的深度学习重建
基本信息
- 批准号:10007241
- 负责人:
- 金额:$ 34.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAdoptionAffectAlgorithmsAwarenessBalance trainingBrainBreathingCardiacCardiovascular DiseasesClinicalConsumptionDataDevelopmentDiagnosticDiffuseDiseaseFibrosisFinancial compensationGoalsHeartHeart DiseasesHeart failureImageInfiltrationLiteratureLiverMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMainstreamingMapsMeasurementMeasuresMethodsModelingMorphologic artifactsMotionMyocardiumNetwork-basedNoiseNon-linear ModelsOrganPatientsPhysiologic pulseProcessPropertyProtocols documentationRelaxationReproducibilityResolutionSamplingScanningSeriesSignal TransductionTechniquesTimeTissuesTrainingWeightartificial neural networkbaseclinical imagingclinically relevantcomputerized data processingcontrast imagingconvolutional neural networkcoronary fibrosisdata spacedeep learningdesignexperimental studyheart imagingimage reconstructionimprovedinnovationlearning strategyloss of functionmachine learning algorithmmotion sensitivitymultitaskneural network architecturenon-invasive imagingnovelphysical propertyquantitative imagingreconstructionvolunteer
项目摘要
Project Summary/Abstract
The goal of this project is to increase the precision and resolution of quantitative magnetic resonance imaging
(MRI). Quantitative information such as tissue relaxation parameters (e.g., T1 and T2) measure tissue function
and indicate disease-related changes in the heart, liver, brain, and other organs. For instance, T1 changes can
provide evidence of diffuse fibrosis in the myocardium that can signal heart disease. Quantitative maps also are
reproducible, directly comparable longitudinally and across subjects, and less affected by the properties of the
scanner used, when compared versus common weighted (non-quantitative) clinical imaging. But, quantitative
imaging involves more complicated and time-consuming pulse sequences. To accomplish this goal, this project
will develop new machine learning algorithms for high-quality parameter mapping from free-breathing data.
The first aim of this project will increase parameter map resolution achievable from highly accelerated, noisy
data. The proposed method will integrate existing deep cascade network-based image reconstructions with
convolutional network-based blocks for super-resolution and parameter map estimation. Preliminary studies
suggest these new blocks improve sharpness and mitigate artifacts in the reconstructed parameter maps.
The next aim will improve the training precision of such artificial neural networks to account for the significant
per-voxel nonlinear fit variability in quantitative MRI. The proposed method will reweight the loss function used
for calibrating these networks by the goodness-of-fit (coefficient of determination) of the reference maps obtained
from fully sampled training data. Preliminary results demonstrate that quality-aware reweighting significantly
improves reconstructed image quality when working with noisy training data. Experiments will evaluate the
precision of both of these innovations against existing deep-learning-based reconstructions on T1 maps obtained
from pre- and post-contrast cardiac images of volunteer patients.
The final aim will address motion during the acquisition by estimating and tracking nonrigid motion in the data
consistency stages of the deep cascade artificial neural network architecture. Two methods are proposed:
deformable motion estimation already demonstrated on compressive model-based image reconstructions, and
a new “re-blurring” convolutional neural network that automatically introduces artifacts into a “clean” image to
match the motion-corrupted data. Both of these methods enforce consistency between motion-affected data and
a motion-free image during the reconstruction. Both methods will be validated on both cardiac and abdominal
images for motion artifacts and reconstruction quality against breath-held parameter mapping acquisitions.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Salerno其他文献
Michael Salerno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Salerno', 18)}}的其他基金
Rapid Free-Breathing Self-Gated Spiral Pulse Sequences for Simultaneous Cine and T1 mapping
用于同步电影和 T1 映射的快速自由呼吸自选通螺旋脉冲序列
- 批准号:
10397984 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
Rapid Free-Breathing Self-Gated Spiral Pulse Sequences for Simultaneous Cine and T1 mapping
用于同步电影和 T1 映射的快速自由呼吸自选通螺旋脉冲序列
- 批准号:
10677550 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
High-Resolution Whole Heart Quantitative CMR Perfusion Imaging in Ischemic Heart Disease
缺血性心脏病的高分辨率全心定量 CMR 灌注成像
- 批准号:
10585807 - 财政年份:2017
- 资助金额:
$ 34.75万 - 项目类别:
High-Resolution Whole Heart Quantitative CMR Perfusion Imaging in Ischemic Heart Disease
缺血性心脏病的高分辨率全心定量 CMR 灌注成像
- 批准号:
9240289 - 财政年份:2017
- 资助金额:
$ 34.75万 - 项目类别:
Quantitative Adenosine Stress CMR with Spiral Pulse Sequences
螺旋脉冲序列定量腺苷应激 CMR
- 批准号:
8879192 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
Quantitative Adenosine Stress CMR with Spiral Pulse Sequences
螺旋脉冲序列定量腺苷应激 CMR
- 批准号:
8466371 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
Quantitative Adenosine Stress CMR with Spiral Pulse Sequences
螺旋脉冲序列定量腺苷应激 CMR
- 批准号:
8279056 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
Quantitative Adenosine Stress CMR with Spiral Pulse Sequences
螺旋脉冲序列定量腺苷应激 CMR
- 批准号:
8700494 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Research Grant