Crossing space and time: uncovering the nonlinear dynamics of multimodal and multiscale brain activity
跨越时空:揭示多模式和多尺度大脑活动的非线性动力学
基本信息
- 批准号:10007011
- 负责人:
- 金额:$ 112.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-17 至 2024-09-16
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArousalAutomobile DrivingBRAIN initiativeBehaviorBrainBrain DiseasesCellsCharacteristicsComplexDataData SetDevelopmentDimensionsElectrophysiology (science)EvolutionExhibitsFoundationsFunctional Magnetic Resonance ImagingFutureGoalsIndividualKnowledgeLeadLearningLocationMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModalityModelingNeuronsNonlinear DynamicsOpticsPopulationProcessResolutionSamplingStructureSystemTestingTimeTranslatingVariantVibrissaeWorkanalogbasebrain researchdynamic systemexperimental studyimprovedinformation processinginsightlarge datasetslong short term memorylong short term memory networkmillisecondmultimodal datamultimodalitymultiscale datanetwork architectureneural networkneuroregulationoptical imagingpredicting responseresponsesomatosensorytemporal measurementtheoriestooltool development
项目摘要
The brain is a complex dynamical system, with a hierarchy of spatial and temporal scales ranging from microns
and milliseconds to centimeters and years. Activity at any given scale contributes to activity at the scales above
it and can influence activity at smaller scales. Thus a true understanding of the brain requires the ability to
understand how each level contributes to the system as a whole.
Most brain research focuses on a single scale (single unit firing, activity in a circuit), which cannot account for
the constraints imposed by activities at other scales. The goal of this proposal is to develop a framework for the
integration of multiscalar, multimodal measurements of brain activity. One of the challenges in understanding
how activity translates across scales is that features that are relevant at one scale (e.g., firing rate) do not have
clear analogues at other scales. We address this issue by defining trajectories in “state space” at each scale,
where the state space is defined by parameters and time scales appropriate to each type of data. The trajectory
of brain activity through state space can uncover features like attractor dynamics and limit cycles that
characterize the evolution of activity. Using machine learning along with new and existing multimodal
measurements of brain activity (MRI, optical, and electrophysiological), we propose to establish methods that
relate trajectories across scales while handling the mismatch in temporal sampling rates inherent in multi-scale
data. Specific aims are 1. Create and test a tool for learning how trajectories at fast scales influence activity at
slower scales. Different modalities have different inherent temporal resolutions in addition to different types
of contrast. Current methods generally downsample the faster modality in some way, losing much information
in the process. We will leverage variants on long short-term memory (LSTM) network architectures to learn the
relationship between state space trajectories acquired simultaneously with population recording and optical
imaging, and with optical imaging and fMRI. 2. Create and test a tool for learning how trajectories at slow
scales influence activity at faster scales. Leveraging the same LSTM-based approach, we will learn how
slower, larger scale activity affects activity at smaller scales, using whisker stimulation as a test case. We
anticipate inclusion of the large scale activity (measured with fMRI or optical imaging) will improve prediction
of the response at smaller scales (measured with optical imaging or population recording).
Our work will allow us to begin to answer a wide range of questions about how the brain functions (e.g., what
type of localized stimulation that will drive the brain to a desired global state? How does modulation of the
global brain state affect local information processing?) and provide guidance for future experiments by
identifying key features that influence activity across scales. By approaching the whole brain as a complex
dynamical system, we will break free from the limitations of previous studies that focus on individual cells or
circuits. We also expect our work to stimulate new theories that incorporate multiple scales of activity.
大脑是一个复杂的动力系统,具有从微米到微米的空间和时间尺度的层次结构。
从毫秒到厘米再到年任何特定规模的活动都有助于上述规模的活动
它可以在较小的尺度上影响活动。因此,要真正了解大脑,
了解每个层次对整个系统的贡献。
大多数大脑研究都集中在一个单一的尺度上(单个单位的放电,回路中的活动),这不能解释大脑的活动。
其他规模的活动所造成的限制。本提案的目标是为以下方面制定一个框架:
整合多标量,多模态测量大脑活动。理解的挑战之一是
活动如何跨尺度转换是在一个尺度上相关的特征(例如,发射率)没有
在其他尺度上有明显的类似物。我们通过在每个尺度上定义“状态空间”中的轨迹来解决这个问题,
其中状态空间由适合于每种类型的数据的参数和时间尺度来定义。轨迹
通过状态空间的大脑活动可以揭示吸引子动力学和极限环等特征,
描述活动的演变。使用机器学习沿着新的和现有的多模态
测量大脑活动(MRI,光学和电生理),我们建议建立方法,
在处理多尺度中固有的时间采样率不匹配的同时,
数据具体目标是1。创建并测试一个工具,用于学习快速规模的轨迹如何影响活动,
更慢的音阶不同的模态除了具有不同的类型外,还具有不同的固有时间分辨率
对比度。目前的方法通常以某种方式对更快的模态进行下采样,丢失了很多信息
在这个过程中。我们将利用长短期记忆(LSTM)网络架构的变体来学习
与人口记录和光学同时获得的状态空间轨迹之间的关系
成像,光学成像和功能磁共振成像。2.创建和测试一个工具,用于学习如何在缓慢的轨迹
规模影响活动在更快的规模。利用相同的基于LSTM的方法,我们将学习如何
使用触须刺激作为测试案例,较慢的、较大规模的活动影响较小规模的活动。我们
预期包括大规模活动(用功能磁共振成像或光学成像测量)将改善预测
在较小的尺度上的反应(用光学成像或人口记录测量)。
我们的工作将使我们开始回答有关大脑如何运作的广泛问题(例如,什么
是一种局部刺激,可以将大脑驱动到一个理想的全局状态?如何调制的
全球大脑状态影响局部信息处理?)并为未来的实验提供指导,
确定影响跨规模活动的关键特征。通过将整个大脑作为一个复杂的
动力系统,我们将摆脱以往研究的局限性,专注于单个细胞或
电路.我们还希望我们的工作能够激发新的理论,将多个活动尺度结合起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shella D Keilholz其他文献
Shella D Keilholz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shella D Keilholz', 18)}}的其他基金
9.4T MRI Upgrade for Translational Neuroimaging Research
9.4T MRI 升级用于转化神经影像研究
- 批准号:
10177221 - 财政年份:2021
- 资助金额:
$ 112.45万 - 项目类别:
Crossing space and time: uncovering the nonlinear dynamics of multimodal and multiscale brain activity
跨越时空:揭示多模式和多尺度大脑活动的非线性动力学
- 批准号:
10353118 - 财政年份:2021
- 资助金额:
$ 112.45万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
10343774 - 财政年份:2020
- 资助金额:
$ 112.45万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
10579830 - 财政年份:2020
- 资助金额:
$ 112.45万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
9887350 - 财政年份:2020
- 资助金额:
$ 112.45万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9754248 - 财政年份:2016
- 资助金额:
$ 112.45万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9352877 - 财政年份:2016
- 资助金额:
$ 112.45万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9205825 - 财政年份:2016
- 资助金额:
$ 112.45万 - 项目类别:
Contribution of Ultra Low Frequency LFPs to Functional MRI
超低频 LFP 对功能 MRI 的贡献
- 批准号:
8704404 - 财政年份:2012
- 资助金额:
$ 112.45万 - 项目类别:
Contribution of ultralow frequency LFPs to functional MRI
超低频 LFP 对功能 MRI 的贡献
- 批准号:
10159972 - 财政年份:2012
- 资助金额:
$ 112.45万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 112.45万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 112.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 112.45万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 112.45万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 112.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 112.45万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 112.45万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 112.45万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 112.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 112.45万 - 项目类别:
Studentship