Crossing space and time: uncovering the nonlinear dynamics of multimodal and multiscale brain activity
跨越时空:揭示多模式和多尺度大脑活动的非线性动力学
基本信息
- 批准号:10353118
- 负责人:
- 金额:$ 13.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-09-16
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBrainBrain DiseasesCellsComplexDataElectrophysiology (science)EvolutionExhibitsFoundationsFunctional Magnetic Resonance ImagingFutureGoalsIndividualLearningMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMethodsModalityModelingNeuronsNonlinear DynamicsOpticsPopulationProcessSamplingStructureSystemTestingTimeTranslatingVariantVibrissaeWorkanalogbasebrain researchdynamic systemexperimental studyimprovedinformation processinglong short term memorylong short term memory networkmillisecondmultimodalitymultiscale datanetwork architectureneuroregulationoptical imagingpredicting responsetemporal measurementtheoriestool
项目摘要
The brain is a complex dynamical system, with a hierarchy of spatial and temporal scales ranging from microns
and milliseconds to centimeters and years. Activity at any given scale contributes to activity at the scales above
it and can influence activity at smaller scales. Thus a true understanding of the brain requires the ability to
understand how each level contributes to the system as a whole.
Most brain research focuses on a single scale (single unit firing, activity in a circuit), which cannot account for
the constraints imposed by activities at other scales. The goal of this proposal is to develop a framework for the
integration of multiscalar, multimodal measurements of brain activity. One of the challenges in understanding
how activity translates across scales is that features that are relevant at one scale (e.g., firing rate) do not have
clear analogues at other scales. We address this issue by defining trajectories in “state space” at each scale,
where the state space is defined by parameters and time scales appropriate to each type of data. The trajectory
of brain activity through state space can uncover features like attractor dynamics and limit cycles that
characterize the evolution of activity. Using machine learning along with new and existing multimodal
measurements of brain activity (MRI, optical, and electrophysiological), we propose to establish methods that
relate trajectories across scales while handling the mismatch in temporal sampling rates inherent in multi-scale
data. Specific aims are 1. Create and test a tool for learning how trajectories at fast scales influence activity at
slower scales. Different modalities have different inherent temporal resolutions in addition to different types
of contrast. Current methods generally downsample the faster modality in some way, losing much information
in the process. We will leverage variants on long short-term memory (LSTM) network architectures to learn the
relationship between state space trajectories acquired simultaneously with population recording and optical
imaging, and with optical imaging and fMRI. 2. Create and test a tool for learning how trajectories at slow
scales influence activity at faster scales. Leveraging the same LSTM-based approach, we will learn how
slower, larger scale activity affects activity at smaller scales, using whisker stimulation as a test case. We
anticipate inclusion of the large scale activity (measured with fMRI or optical imaging) will improve prediction
of the response at smaller scales (measured with optical imaging or population recording).
Our work will allow us to begin to answer a wide range of questions about how the brain functions (e.g., what
type of localized stimulation that will drive the brain to a desired global state? How does modulation of the
global brain state affect local information processing?) and provide guidance for future experiments by
identifying key features that influence activity across scales. By approaching the whole brain as a complex
dynamical system, we will break free from the limitations of previous studies that focus on individual cells or
circuits. We also expect our work to stimulate new theories that incorporate multiple scales of activity.
大脑是一个复杂的动力系统,具有从微米到微米的空间和时间尺度的层次结构
从毫秒到厘米再到几年。任何给定规模的活动对上述规模的活动都有贡献
它可以影响较小规模的活动。因此,真正了解大脑需要具备以下能力
了解每个级别作为一个整体对系统的贡献。
大多数大脑研究集中在一个单一的尺度上(单一单位放电,电路中的活动),这不能解释
其他规模的活动所施加的限制。这项提议的目标是为
整合多标量、多模式的大脑活动测量。理解以下问题的挑战之一
活动跨尺度转换的方式是,在一个尺度上相关的要素(例如,激发速率)不具有
在其他规模上的明确类比。我们通过在每个尺度上定义状态空间中的轨迹来解决该问题,
其中状态空间由适合于每种类型的数据的参数和时标来定义。弹道
通过状态空间对大脑活动的研究可以揭示吸引子动力学和极限环等特征
描述活动的演变。使用机器学习以及新的和现有的多模式
为了测量大脑活动(MRI、光学和电生理),我们建议建立
在处理多尺度中固有的时间采样率失配的同时,将跨尺度的轨迹关联起来
数据。具体目标是1.创建并测试一个工具,用于了解快速规模的轨迹如何影响
比例尺更慢。不同的模式除了具有不同的类型外,还具有不同的固有时间分辨率
对比度。目前的方法通常以某种方式对较快的模式进行下采样,丢失了大量信息
在这个过程中。我们将利用长期短期记忆(LSTM)网络体系结构的变体来了解
与布居记录同时获得的状态空间轨迹与光学的关系
成像,以及光学成像和功能磁共振成像。2.创建并测试一个工具,用于了解轨迹如何变慢
规模会以更快的规模影响活动。利用相同的基于LSTM的方法,我们将学习如何
以胡须刺激为例,较慢、较大规模的活动会影响较小规模的活动。我们
预计包括大规模活动(使用功能磁共振成像或光学成像测量)将提高预测
在较小尺度上的反应(用光学成像或人口记录测量)。
我们的工作将使我们能够开始回答关于大脑如何运作的广泛问题(例如,
一种局部刺激类型,将把大脑驱动到理想的全局状态?调制是如何
全球大脑状态影响局部信息处理?)并通过以下方式为未来的实验提供指导
确定影响跨规模活动的关键特征。通过将整个大脑作为一个复合体来处理
动力学系统,我们将打破以往研究侧重于单个细胞或
电路。我们还希望我们的工作能激发出包含多种活动尺度的新理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shella D Keilholz其他文献
Shella D Keilholz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shella D Keilholz', 18)}}的其他基金
9.4T MRI Upgrade for Translational Neuroimaging Research
9.4T MRI 升级用于转化神经影像研究
- 批准号:
10177221 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
10343774 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
10579830 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
9887350 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Crossing space and time: uncovering the nonlinear dynamics of multimodal and multiscale brain activity
跨越时空:揭示多模式和多尺度大脑活动的非线性动力学
- 批准号:
10007011 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9754248 - 财政年份:2016
- 资助金额:
$ 13.19万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9352877 - 财政年份:2016
- 资助金额:
$ 13.19万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9205825 - 财政年份:2016
- 资助金额:
$ 13.19万 - 项目类别:
Contribution of Ultra Low Frequency LFPs to Functional MRI
超低频 LFP 对功能 MRI 的贡献
- 批准号:
8704404 - 财政年份:2012
- 资助金额:
$ 13.19万 - 项目类别:
Contribution of ultralow frequency LFPs to functional MRI
超低频 LFP 对功能 MRI 的贡献
- 批准号:
10159972 - 财政年份:2012
- 资助金额:
$ 13.19万 - 项目类别:
相似海外基金
Understanding how psychedelic drugs affect brain and behaviour in rodents
了解迷幻药物如何影响啮齿类动物的大脑和行为
- 批准号:
2897454 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Studentship
Does Vision Loss Affect Tauopathy in the Brain
视力丧失是否会影响大脑中的 Tau 蛋白病
- 批准号:
10670631 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Neuroplasticity in songbirds: how changing behaviour and experience affect learning and the brain
鸣禽的神经可塑性:行为和经验的变化如何影响学习和大脑
- 批准号:
RGPIN-2018-04060 - 财政年份:2022
- 资助金额:
$ 13.19万 - 项目类别:
Discovery Grants Program - Individual
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
- 批准号:
RGPIN-2021-02948 - 财政年份:2022
- 资助金额:
$ 13.19万 - 项目类别:
Discovery Grants Program - Individual
Peering into the future of neuroscience: how visual cues are processed in the avian brain to affect locomotion
展望神经科学的未来:鸟类大脑如何处理视觉线索以影响运动
- 批准号:
559062-2021 - 财政年份:2022
- 资助金额:
$ 13.19万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Peering into the future of neuroscience: how visual cues are processed in the avian brain to affect locomotion
展望神经科学的未来:鸟类大脑如何处理视觉线索以影响运动
- 批准号:
559062-2021 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
How does environmental enrichment affect brain development?
丰富的环境如何影响大脑发育?
- 批准号:
DP210102473 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Discovery Projects
Neuroplasticity in songbirds: how changing behaviour and experience affect learning and the brain
鸣禽的神经可塑性:行为和经验的变化如何影响学习和大脑
- 批准号:
RGPIN-2018-04060 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Discovery Grants Program - Individual
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
- 批准号:
RGPIN-2021-02948 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Discovery Grants Program - Individual
Does menthol affect nicotine's impact on brain reinforcement mechanisms in dependent and nondependent users of electronic nicotine delivery systems?
薄荷醇是否会影响尼古丁对电子尼古丁输送系统的依赖和非依赖用户的大脑强化机制的影响?
- 批准号:
445102 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Operating Grants














{{item.name}}会员




