Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
基本信息
- 批准号:10006784
- 负责人:
- 金额:$ 162.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-05 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAntigensAssimilationsBacterial MeningitisBacteriologyBig DataCessation of lifeCharacteristicsCholeraClimateClinical TrialsCommunicable DiseasesComplexCountryDataDecision MakingDeveloped CountriesDeveloping CountriesDiagnosticDiarrheaDimensionsDiseaseDisease OutbreaksEconomicsEngineeringEnvironmental Risk FactorEpidemicEquilibriumExanthemaExerciseFeverFrequenciesGenus staphylococcusGeographyHIVHandHealth PolicyHospitalsHybridsIndividualInfantInfectionInfrastructureInvestmentsLaboratoriesLeadershipLeptospirosisMachine LearningMalariaMeaslesMedicalMedical emergencyMelioidosisMeningitisMethodsMicrobiologyModelingMolecularMorbidity - disease rateNamesNewborn InfantParalysedPatient-Focused OutcomesPatientsPhysiciansPopulationPrediction of Response to TherapyPreventiveProcessPublic HealthReactionResistanceResourcesRoleSepsisSpecimenSyndromeSystemTechniquesTechnologyTestingTimeTrainingUgandaWorkacute infectionantimicrobialauthorityclimate datacostcost outcomesdata fusiondesigneffective therapyfightingfluglobal healthimprovedindividual patientinfectious disease modelinfectious disease treatmentinnovationinsightmicrobialmortalityneonatal infectionnovelopen sourcepathogenpersonalized medicinepersonalized predictionspoint of carepredictive modelingprospectiveresistance genespreading factorsurveillance data
项目摘要
Challenge, Innovation and Impact: In recent years, we have demonstrated that it is feasible to predict
epidemic disease outbreaks from retrospective seasonal and geographical case data and to show that we can
take climate factors into account in our predictive models. We are moving closer to real-time prediction at the
population level. But we have never used prediction at point-of-care for treating the individual patient.
Presently, personalized medicine uses delayed results of laboratory testing of individuals. For infectious
disease, most of such testing has targeted the pathogen in the host-pathogen interaction. The role of
laboratory testing is to modify therapy after a variable period of time delay. Personalized medicine today is
reactive. Complicating matters further, many infectious epidemic diseases are strongly dependent on
environmental factors and climate. Lastly, we want to name the pathogens we are fighting, but we really need
to know the resistance characteristics to select therapy for patients effectively. Both speciation and resistance
can now be determined from molecular data, which can be integrated into point-of-care treatment predictions.
We here propose a radically different approach to the treatment of infectious diseases. Our
hypothesis is that the alternative to time-delayed and expensive laboratory analysis of specimens from
individual patients, is to use predictive modeling to forecast point-of-care treatment. Time-delayed
personalized testing can be conducted as surveillance, and that data used for real-time prediction to guide
point-of-care treatment.
We will introduce predictive personalized public health (P3H) policy at the individual patient level,
with the potential to substantially improve patient outcomes compared with our present reactive approaches.
Our key rationale is to expand population infectious disease predictive modeling in order to achieve prediction
for treatment at point-of-care. Our primary insight is that we can reposition the delayed reactive personalized
testing from the urgent medical decision-making process, and into a predictive modeling framework. The gaps
and opportunities in technology that we will address are four-fold. First, we will employ individual case
geospatial mapping at a fine scale to take into account infection spread and environmental factors. Second,
our ability to perform pan-microbial analysis using molecular techniques is now feasible. Third, modeling our
novel fusion of data has no simple low-dimensional solution – but machine learning technologies are now
capable of handling such big data assimilation, model discovery and prediction. Fourth, our proposal is not an
academic exercise. We have a partnership with the economic planners within a developing country to design
and implement our new methods. We will prospectively tune and validate our algorithms in real-time. Our
deliverable will be an open-source framework ready for clinical trials testing and adaptation to the public health
infrastructure in any country.
挑战、创新和影响:近年来,我们已经证明,预测是可行的
从追溯的季节性和地理病例数据中发现流行病暴发,并表明我们可以
在我们的预测模型中考虑气候因素。我们正在向实时预测迈进一步
人口水平。但我们从来没有在治疗个别患者时使用过临床点的预测。
目前,个性化医疗使用延迟的个人实验室测试结果。对于传染性的
对于疾病,大多数这种检测都是针对宿主-病原体相互作用中的病原体。的作用
实验室检测是在一段可变的时间延迟后修改治疗方法。今天的个性化医疗是
被动的。更复杂的是,许多传染性流行病强烈依赖于
环境因素和气候。最后,我们想要说出我们正在抗击的病原体的名字,但我们确实需要
了解耐药特点,为有效选择治疗方案提供依据。物种形成和抗性
现在可以从分子数据中确定,这些数据可以整合到护理点治疗预测中。
我们在这里提出了一种截然不同的传染病治疗方法。我们的
假设是,替代时间延迟和昂贵的实验室分析样品来自
个别患者,是使用预测建模来预测护理点治疗。延时
个性化测试可以作为监督进行,并将数据用于实时预测以指导
护理点治疗。
我们将在个人患者层面引入预测性个性化公共卫生(P3H)政策,
与我们目前的反应性方法相比,有可能显著改善患者的预后。
我们的主要原理是扩展人口传染病预测模型,以实现预测
在疗养点接受治疗。我们的主要见解是,我们可以重新定位延迟的反应性个性化
测试从紧急的医疗决策过程,并进入预测建模框架。差距
我们将解决的技术机遇有四个方面。首先,我们将采用个别案例
在精细比例尺上绘制地理空间图,以考虑到感染传播和环境因素。第二,
我们使用分子技术进行泛微生物分析的能力现在是可行的。第三,为我们的
新的数据融合没有简单的低维解决方案,但机器学习技术现在
能够处理这样的大数据同化、模型发现和预测。第四,我们的建议不是
学术练习。我们与发展中国家的经济规划者建立了合作关系,以设计
并实施我们的新方法。我们将前瞻性地实时调整和验证我们的算法。我们的
交付成果将是一个开放源码框架,可用于临床试验、测试和适应公共卫生
任何国家的基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN J SCHIFF其他文献
STEVEN J SCHIFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN J SCHIFF', 18)}}的其他基金
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10675428 - 财政年份:2022
- 资助金额:
$ 162.8万 - 项目类别:
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10291003 - 财政年份:2022
- 资助金额:
$ 162.8万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10241253 - 财政年份:2018
- 资助金额:
$ 162.8万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10699327 - 财政年份:2018
- 资助金额:
$ 162.8万 - 项目类别:
Control of the Neonatal Septisome and Hydrocephalus in sub-Saharan Africa
撒哈拉以南非洲地区新生儿败血症和脑积水的控制
- 批准号:
8754244 - 财政年份:2015
- 资助金额:
$ 162.8万 - 项目类别:
Innovations at the Intersection of Neural Engineering, Materials Sci & Medicine
神经工程、材料科学交叉点的创新
- 批准号:
7856458 - 财政年份:2009
- 资助金额:
$ 162.8万 - 项目类别:
Innovations at the Intersection of Neural Engineering, Materials Sci & Medicine
神经工程、材料科学交叉点的创新
- 批准号:
7941719 - 财政年份:2009
- 资助金额:
$ 162.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 162.8万 - 项目类别:
Research Grant